首页 > 论文 > International Journal of Extreme Manufacturing > 2卷 > 1期(pp:12005--1)

The recent development of soft x-ray interference lithography in SSRF

The recent development of soft x-ray interference lithography in SSRF

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

This paper introduces the recent progress in methodologies and their related applications based on the soft x-ray interference lithography beamline in the Shanghai synchrotron radiation facility. Dual-beam, multibeam interference lithography and Talbot lithography have been adopted as basic methods in the beamline. To improve the experimental performance, a precise real-time vibration evaluation system has been established; and the lithography stability has been greatly improved. In order to meet the demands for higher resolution and practical application, novel experimental methods have been developed, such as high-order diffraction interference exposure, high-aspect-ratio and large-area stitching exposure, and parallel direct writing achromatic Talbot lithography. As of now, a 25 nm half-pitch pattern has been obtained; and a cm2 exposure area has been achieved in practical samples. The above methods have been applied to extreme ultraviolet photoresist evaluation, photonic crystal and surface plasmonic effect research, and so on.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1088/2631-7990/ab70ae

所属栏目:Topical Review

基金项目:This work was performed at the SSRF XIL beamline (BL08U1B). Financial support was provided by the National Key R&D Program of China (2017YFA0206001), the National Key Basic Research Program of the China Science and Technology Commission of Shanghai Municipality (17JC1400802), and the National Natural Science Foundation of China (Nos. 11775291, 11875314).

收稿日期:2019-12-03

修改稿日期:2020-01-21

网络出版日期:--

作者单位    点击查看

Jun Zhao:Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, Shanghai, People’s Republic of ChinaShanghai Institute of Applied Physical, CAS, Shanghai, People’s Republic of China
Shumin Yang:Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, Shanghai, People’s Republic of ChinaShanghai Institute of Applied Physical, CAS, Shanghai, People’s Republic of China
Chaofan Xue:Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, Shanghai, People’s Republic of ChinaShanghai Institute of Applied Physical, CAS, Shanghai, People’s Republic of China
Liansheng Wang:Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, Shanghai, People’s Republic of ChinaShanghai Institute of Applied Physical, CAS, Shanghai, People’s Republic of China
Zhaofeng Liang:Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, Shanghai, People’s Republic of China
Lei Zhang:Shanghai Institute of Applied Physical, CAS, Shanghai, People’s Republic of China
Yong Wang:Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, Shanghai, People’s Republic of ChinaShanghai Institute of Applied Physical, CAS, Shanghai, People’s Republic of China
Yanqing Wu:Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, Shanghai, People’s Republic of ChinaShanghai Institute of Applied Physical, CAS, Shanghai, People’s Republic of China
Renzhong Tai:Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, CAS, Shanghai, People’s Republic of ChinaShanghai Institute of Applied Physical, CAS, Shanghai, People’s Republic of China

联系人作者:Yanqing Wu(wuyanqing@sinap.ac.cn and tairenzhong@sinap.ac.cn)

【1】Harun H S, David C, Gobrecht J, Golovkina V, Cerrina F, Kim S O and Nealey P F 2003 Microelectron. Eng. 67–8 56–62

【2】Harun H S 2005 Microelectron. Eng. 78-79 410–6

【3】Nassir M, Daniel F, Jens G and Yasin E 2014 Opt. Lett. 39 2286–9

【4】Zhengjun L, Kari I, Nikolai C, Kestutis G and Ilkka T 2013 Nanotechnology 24 175304

【5】Li H, Ye T, Shi L and Xie C 2017 J. Micromech. Microeng. 27 124002

【6】Xie C, Zhu X, Niu J, Li H, Liu M, Chen B, Hu Y and Shi L 2011 Acta Opt. Sin. 31 0900128

【7】Chao W, Keith J M, Zengli F, Wen-Di L and Stephen Y C 2011 Nanotechnology 22 445301

【8】Wang L, Harun H S and Yasin E 2012 Nanotechnology 23 305303

【9】Nassir M, Jens. G and Yasin E 2015 Microelectron. Eng. 143 55–63

【10】Birgit P, Andreas L, Eugenie K, Christian D and Yasin E 2011 Nanotechnology 22 37

【11】Yang S M, Wang L S, Zhao J, Xue C F, Liu H G, Xu Z J, Wu Y Q and Tai R Z 2015 Nucl. Sci. Tech. 26 010101

【12】Vaida A et al 2009 J. Micro/Nanolith. Mems Moems 8 021204

【13】Matthias D, Tugce N G, Amitav S, Nicholas D S and Celestino P 2015 ACS Appl. Mater. Interfaces 7 11337–45

【14】Yasuyuki F, Yuya Y, Takafumi I, Takuro U, Tetsuo H, Takeo W and Kinoshita H 2011 Microelectron. Eng. 88 1944–7

【15】Zuhal T, Michaela V, Iacopo M, Karen G O, Marieke M, Oktay Y, Rik H, Gijsbert R, Rolf C and Yasin E 2018 Proc. SPIE 10583 105831W

【16】Roel G, Harun H S, Yasin E, Amandine J and Frieda V R 2006 Microelectron. Eng. 83 1103–6

【17】Daniel F, Hans S, Ralph S and Yasin E 2017 Phys. Rev. B 96 115307

【18】Yogesh J, Shankar K J, Mario A, J?rg F L and Yasin E 2007 Nat. Photon. 1 41

【19】Hideaki T, Shinji T, Toru F, Hiroo T and Takahiro G 2014 Proc. SPIE 9048 90481E

【20】John W, Cheng Y C, Artak I, Quinn L, Mike F, Mike G, Joseph B, Paul N and Franco C 2007 Nucl. Instrum. Methods Phys. Res. A 582 254–7

【21】Yasin E, Harun H S, Celestino P, Jens G, Mark P S and Paul F N 2007 Microelectron. Eng. 84 700–4

【22】Jintang H, Daniel F, Yasin E and Celestino P 2015 Microelectron. Eng. 141 32–6

【23】Waiz K, Simon A T, Mehtap O, Thomas J S, Jens G, Jeroen A B and Yasin E 2015 Nanoscale 7 7386

【24】Yasin E, Michaela V, Nassir M and Daniel F 2014 Proc. SPIE 9048 904804

【25】Urayama T, Watanabe T, Yamaguchi Y, Matsuda N, Fukushima Y, Iguchi T, Harada T and Kinoshita H 2011 J. Photopolymer Sci. Technol. 24 153–7

【26】Lin C H, Fong C H, Lin Y M, Lee Y Y, Fung H S and Shew B Y 2011 Microelectron. Eng. 88 2639–43

【27】Lin C H, Lin Y M, Liang C C, Lee Y Y, Fung H S, Shew B Y and Chen S H 2012 Microelectron. Eng. 98 194–7

【28】Artak I, Wüest A, John W, Fan J and Franco C 2016 Opt. Express 16 9106

【29】Mojarad N, Hojeij M, Wang L, Gobrecht J and Ekinci Y 2015 Nanoscale 7 4031

【30】Meijer T, Beardmore J P, Fabrie C G C H M, van Lieshout J P, Notermans R P M J W, Sang R T, Vredenbregt E J D and van Leeuwen K A H 2011 Appl. Phys. B 105 703–13

【31】Wang L, Solak H and Ekinci Y 2012 Nanotechnology 23 305303

【32】Pingping Z, Shumin Y, Liansheng W, Jun Z, Zhichao Z, Bo L, Jun Z and Xuhui S 2014 Nanotechnology 25 245301

【33】Parisse P, Luciani D, D’Angelo A, Santucci S, Zuppella P, Tucceri P, Reale A and Ottaviano L 2009 Mater. Sci. Eng. B 165 227–30

【34】Chaofan X, Yanqing W, Fangyuan Z, Shumin Y, Haigang L, Jun Z, Liansheng W and Renzhong T 2016 Rev. Sci. Instrum. 87 043303

【35】Jun Z, Yanqing W, Chaofan X, Shumin Y, Liansheng W, Fangyuan Z, Zhichao Z, Bo L, Yong W and Renzhong T 2017 Microelectron. Eng. 170 49–53

【36】Chaofan X et al 2017 Appl. Surf. Sci. 425 553–7

【37】Birgit P, Hannes M, Reto G, Luca B, Sergey G, Christian D, Jorg F L, Thomas F and Yasin E 2011 Acs Nano 5 6374–82

【38】Zhang X, Deng R, Yang F, Jiang C, Xu S and Li M 2018 ACS. Photonics 5 2997–3002

【39】Li Z, Butun S and Aydin K 2014 ACS Nano 8 8242–8

【40】Shumin Y, Chaofan X, Jun Z, Liansheng W, Yanqing W and Renzhong T 2019 Nanotechnology 30 315301

【41】Huijuan X, Shumin Y, Liansheng W, Jun Z, Chaofan X, Yanqing W and Renzhong T 2019 Chin. Opt. Lett. 17 062201

【42】Li L, Liu X, Pal S, Wang S L, Ober C K and Giannelis E P 2017 Soc. Rev. 46 4855–66

【43】Allen R D, Thackeray J W and Somervell M H 2011 Proc. SPIE 7972 797204

【44】Tomoki N et al 2016 J. Photopolymer Sci. Technol. 29 475–8

【45】Carmen P, Andreas F, Alexandra M, John R, Yasin E and Alex P G 2017 SPIE Adv. Lithography 10143 101430V

【46】Yildirim O et al 2017 SPIE Adv. Lithography 10143 101430Q

【47】Zuhal T, Xiaolong W, Iacopo M, Lidia van Lent P, Marieke M, Rolf C, Gijsbert R, Rik H and Ekinci Y 2018 Proc. SPIE 10809 108090L

【48】Li C et al 2014 Sci. China Chem. 57 1746–50

【49】Jinping C et al 2019 ACS Appl. Polym. Mater. 1 526–34

【50】Zhichao Z et al 2017 Appl. Phys. Lett. 110 051901

【51】Zhichao Z et al 2015 Appl. Phys. Lett. 106 241901

【52】Shuang W et al 2016 Opt. Express 24 231

【53】Qiang W, Bo L, Zhichao Z, Mu G, Hong C, Chaofan X, Jun Z, Yanqing W, Renzhong T and Xiaoping O 2018 Sci. Rep. 8 9254

【54】Xiaolin H et al 2016 Appl. Opt. 55 148–52

【55】Ming Y et al 2015 J. Alloys Compd. 621 244–9

【56】Xiaolin et al 2017 J. Appl. Phys. 121 153105

【57】Libin S et al 2016 Opt. Express 24 19112

【58】Qingjun W et al 2019 Opt. Lett. 44 1031

引用该论文

Jun Zhao,Shumin Yang,Chaofan Xue,Liansheng Wang,Zhaofeng Liang,Lei Zhang,Yong Wang,Yanqing Wu,Renzhong Tai. The recent development of soft x-ray interference lithography in SSRF[J]. International Journal of Extreme Manufacturing, 2020, 2(1): 012005

Jun Zhao,Shumin Yang,Chaofan Xue,Liansheng Wang,Zhaofeng Liang,Lei Zhang,Yong Wang,Yanqing Wu,Renzhong Tai. The recent development of soft x-ray interference lithography in SSRF[J]. International Journal of Extreme Manufacturing, 2020, 2(1): 012005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF