首页 > 论文 > 中国激光 > 47卷 > 7期(pp:701002--1)

高速电吸收调制激光器研究进展 (特邀综述)

Progress in High-Speed Electroabsorption Modulated Lasers (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着数据中心、5G宽带无线通信的不断发展,短距宽带传输的需求大幅增长,极大地推动了高速光电器件的发展。在短距应用中,虽然直接调制激光器具有低成本、低功耗的优势,但其调制带宽和传输距离受到张弛振荡频率和频率啁啾的限制。电吸收调制激光器(EML)集成光源具有大调制带宽、低频率啁啾的特点,可以实现更高速率和更远距离的传输。介绍了EML集成光源的外延集成方案和器件结构,并介绍了国内外研究机构对高速率、大功率、低成本EML的主要研究进展,最后对EML的未来发展进行了展望。

Abstract

The continuous growth of data centers and 5G wideband wireless communication is driving toward an ever increasing demand for short-distance broadband fiber transmission, which has greatly promoted the development of high-speed optoelectronic devices. In short-distance applications, although directly modulated lasers have the advantages of low cost and low power consumption, the modulation bandwidth and transmission distance are limited by the relaxation oscillation frequency and frequency chirp. On the other hand, an electroabsorption modulated laser (EML) exhibits wide modulation bandwidth and low frequency chirp, thus allowing transmission with higher bit-rate and over longer distance. In this paper, the integration schemes and device structure of EML integrated light source are discussed. Recent progress in high-speed, high power, and low cost EML devices is summarized. Finally, a prospect for future development of EML is presented.

广告组5 - 光束分析仪
补充资料

中图分类号:TN29

DOI:10.3788/CJL202047.0701002

所属栏目:“半导体激光器”专题

基金项目:国家自然科学基金、清华大学自主科研项目;

收稿日期:2020-04-20

修改稿日期:2020-05-28

网络出版日期:2020-07-01

作者单位    点击查看

孙长征:北京信息科学与技术国家研究中心, 清华大学电子工程系, 北京 100084
杨舒涵:北京信息科学与技术国家研究中心, 清华大学电子工程系, 北京 100084
熊兵:北京信息科学与技术国家研究中心, 清华大学电子工程系, 北京 100084
王健:北京信息科学与技术国家研究中心, 清华大学电子工程系, 北京 100084
罗毅:北京信息科学与技术国家研究中心, 清华大学电子工程系, 北京 100084

备注:国家自然科学基金、清华大学自主科研项目;

【1】-01-15) [2020-04-20] . http:∥www.ieee802.org/3/bs/. 2018.

【2】Fujisawa T, Kanazawa S, Nunoya N, et al. 4×25-Gbit/s,1.3-μm, monolithically integrated light source for 100-Gbit/s Ethernet . [C]∥36th European Conference and Exhibition on Optical Communication, September 19-23, 2010, Torino, Italy. New York: IEEE. 2010, 1-6.

【3】Matsui Y, Schatz R, Carey G, et al. Direct modulation laser technology toward 50-GHz bandwidth . [C]∥2016 International Semiconductor Laser Conference (ISLC), September 12-15, 2016, Kobe, Japan. New York: IEEE. 2016, 1-2.

【4】Kobayashi W, Fujisawa T, Ito T, et al. Advantages of EADFB laser for 25 Gbaud/s 4-PAM (50 Gbit/s) modulation and 10 km single-mode fibre transmission [J]. Electronics Letters. 2014, 50(9): 683-685.

【5】Coldren L A, Nicholes S C, Johansson L, et al. High performance InP-based photonic ICs: a tutorial [J]. Journal of Lightwave Technology. 2011, 29(4): 554-570.

【6】Kanazawa S, Fujisawa T, Ohki A, et al. A compact EADFB laser array module for a future 100-Gb/s Ethernet transceiver [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2011, 17(5): 1191-1197.

【7】Ramdane A, Devaux F, Souli N, et al. Monolithic integration of multiple-quantum-well lasers and modulators for high-speed transmission [J]. IEEE Journal of Selected Topics in Quantum Electronics. 1996, 2(2): 326-335.

【8】Luo Y, Xiong B, Wang J, et al. 40 GHz AlGaInAs multiple-quantum-well integrated electroabsorption modulator/distributed feedback laser based on identical epitaxial layer scheme [J]. Japanese Journal of Applied Physics. 2006, 45(40): L1071-L1073.

【9】Baier M, Grote N, Moehrle M, et al. Integrated transmitter devices on InP exploiting electro-absorption modulation [J]. PhotoniX. 2020, 1: 4.

【10】Shindo T, Kobayashi W, Fujiwara N, et al. High modulated output power over 9.0 dBm with 1570-nm wavelength SOA assisted extended reach EADFB laser (AXEL) [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2017, 23(6): 1500607.

【11】Kanazawa S, Nakanishi Y, Tsunashima S, et al. Equalizer-free transmission of 100-Gb/s 4-PAM signal generated by flip-chip interconnection EADFB laser module [J]. Journal of Lightwave Technology. 2017, 35(4): 775-780.

【12】Kanazawa S, Fujisawa T, Ishii H, et al. High-speed (400 Gb/s) eight-channel EADFB laser array module using flip-chip interconnection technique [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2015, 21(6): 183-188.

【13】Klein H, Przyrembel G, Sigmund A, et al. 56 gbit/s InGaAlAs-MQW 1300 nm electroabsorption-modulated DFB-lasers with impedance matching circuit . [C]∥39th European Conference and Exhibition on Optical Communication (ECOC 2013), September 22-26, 2013, London: Institution of Engineering and Technology. 2013, 696-698.

【14】Theurer M, Zhang H Y, Wang Y, et al. 2×56 Gb/s from a double side electroabsorption modulated DFB laser and application in novel optical PAM4 generation [J]. Journal of Lightwave Technology. 2017, 35(4): 706-710.

【15】Theurer M, Moehrle M, Troppenz U, et al. 4×56 Gb/s high output power electroabsorption modulated laser array with up to 7 km fiber transmission in L-band [J]. Journal of Lightwave Technology. 2018, 36(2): 181-186.

【16】Sun C Z, Xiong B, Luo Y, et al. Investigation of external optical feedback resistance of IC-DFB and GC-DFB lasers using a very simple experimental set-up [J]. Chinese Physics Letters. 2003, 20(7): 1061-1063.

【17】Sun C Z, Wen G P, Xiong B, et al. Optimal wavelength detuning for electroabsorption modulator integrated distributed feedback lasers based on identical epitaxial layer approach . [C]∥Integrated Photonics Research, July 12, 2000, Québec City. Washington, DC: OSA. 2000, IThI2.

【18】Sun C Z, Xiong B, Wang J, et al. Influence of residual facet reflection on the eye-diagram performance of high-speed electroabsorption modulated lasers [J]. Journal of Lightwave Technology. 2009, 27(15): 2970-2976.

【19】Sun C Z, Xiong B, Wang J, et al. Fabrication and packaging of 40-Gb/s AlGaInAs multiple-quantum-well electroabsorption modulated lasers based on identical epitaxial layer scheme [J]. Journal of Lightwave Technology. 2008, 26(11): 1464-1471.

【20】Sun C Z, Xiong B, Xu J M, et al. 40 Gb/s AlGaInAs electroabsorption modulated laser module with novel packaging design . [C]∥22nd IEEE International Semiconductor Laser Conference, September 26-30, 2010, Kyoto, Japan. New York: IEEE. 2010, 121-122.

【21】Yang S H, Sun C Z, Xiong B, et al. Gain-coupled 4×25 Gb/s EML array based on an identical epitaxial layer integration scheme [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2019, 25(6): 1500806.

【22】Zhao H W, Pinna S, Sang F Q, et al. High-power indium phosphide photonic integrated circuits [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2019, 25(6): 4500410.

【23】Liang S, Lu D, Zhao L J, et al. Fabrication of InP-based monolithically integrated laser transmitters [J]. Science China Information Sciences. 2018, 61(8): 080405.

引用该论文

Sun Changzheng,Yang Shuhan,Xiong Bing,Wang Jian,Luo Yi. Progress in High-Speed Electroabsorption Modulated Lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701002

孙长征,杨舒涵,熊兵,王健,罗毅. 高速电吸收调制激光器研究进展[J]. 中国激光, 2020, 47(7): 0701002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF