首页 > 论文 > 红外 > 41卷 > 4期(pp:41-48)

KNN不同距离度量对FY-4A/AGRI红外亮温反演降水的影响研究

Research on Influence of Different Distance Measurements of KNN on Precipitation Retrieval by AGRI Infrared Bright Temperatures of FY-4A

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

静止卫星的高时空分辨率对高影响灾害性天气的监测和预报有显著优势。开展了基于风云四号A星多通道扫描成像辐射计(Advanced Geosynchronous Radiation Imager,AGRI)红外光谱亮温的台风降水反演研究。探讨了正则化反问题方法中K-最邻近(K-Nearest Neighbor,KNN)不同距离度量对降水反演精度的影响。降水反演共分两步:一是降水视场点识别,主要基于训练字典样本,利用KNN识别待反演的亮温“降水”和“非降水”信号;二是降水视场点反演,即在判识视场点有降水的基础上采用正则化反问题方法进行红外亮温降水反演。KNN距离度量分别采用欧氏、标准化欧氏、马氏和布洛克距离。以台风“安比(2018)”为例,开展了降水反演试验。试验表明,反演结果与GPM的相似度较高,且不同距离度量在反演“极端降水”时各有优势。

Abstract

The high spatial and temporal resolution of geostationary satellite has significant advantages in monitoring and forecasting disastrous weather with high impact. A typhoon precipitation retrieval study based on infrared spectrum bright temperatures of the advanced geosynchronous radiation imager (AGRI) in FY-4A satellite is conducted. The influences on precipitation retrieval accuracy of different distance measurements of K-nearest neighbor (KNN) in the inverse problem of regularization method are discussed. The precipitation retrieval consists of two steps: (1) the identification of precipitation field of view, which uses KNN to identify the “precipitation” and “non-precipitation” signals of brightness temperatures to be retrieved mainly based on the training dictionary samples;(2) the retrieval of the precipitation field of view, which uses inverse problem of regularization method to retrieve the infrared brightness temperatures precipitation on the basis of identifying the precipitation field of view. KNN distance measurement adopts Euclidean, normalized Euclidean, Mahalanobis and Cityblock respectively. Taking typhoon “Ampil (2018)”as an example, the precipitation retrieval experiment is carried out. The experiment shows that the retrieval result has a high similarity with GPM, and different distance measurements have their own advantages in the retrieval of "extreme precipitation".

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:P412.27

DOI:10.3969/j.issn.1672-8785.2020.04.007

所属栏目:研究论文

基金项目:中亚大气科学研究基金项目(CAAS202003);国家自然科学基金项目(41805080);上海台风研究基金项目(TFJJ201909) ;安徽省气象局项目(KM201902)

收稿日期:2020-03-10

修改稿日期:--

网络出版日期:--

作者单位    点击查看

王根:中亚大气科学研究中心,新疆乌鲁木齐830002安徽省气象台 , 强天气集合分析和预报重点实验室,安徽合肥230031安徽省气象科学研究所 ,安徽省大气科学与卫星遥感重点实验室,安徽合肥230031
陆雅君:安徽省气象台, 强天气集合分析和预报重点实验室,安徽合肥230031
王悦:安徽省气象台, 强天气集合分析和预报重点实验室,安徽合肥230031
吴瑞姣:安徽省气象台 , 强天气集合分析和预报重点实验室,安徽合肥230031
丁从慧:安徽省气象台 , 强天气集合分析和预报重点实验室,安徽合肥230031

联系人作者:王根(203wanggen@163.com)

备注:王根(1983-),男,江苏泰州人,博士,副高,主要从事卫星资料同化、正则化反问题与人工智能等方面的研究。E-mail: 203wanggen@163.com

【1】Wang G, Wang K F, Han W, et al. Typhoon maria precipitation retrieval and evolution based on the infrared brightness temperature of the Feng-Yun 4A/Advanced Geosynchronous Radiation Imager[J]. Advances in Meteorology, 2020, 2020:4245037.

【2】王圆圆, 郭徵, 李贵才, 等. 基于广义加性模型估算1979-2014年三峡库区降水及其特征分析[J]. 地理学报, 2017, 72(7): 1207-1220.

【3】Min M, Bai C, Guo J P, et al. Estimating summertime precipitation from Himawari-8 and global forecast system based on machine learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(5): 2557-2570.

【4】王根, 唐飞, 刘晓蓓, 等. M-估计法广义变分同化FY-3B/IRAS通道亮温[J]. 遥感学报, 2017, 21(1): 52-61.

【5】孙绍辉, 李万彪, 黄亦鹏. 利用Himawari-8卫星红外图像反演降雨[J]. 北京大学学报(自然科学版), 2019, 55(2): 215-226.

【6】Feidas H, Giannakos A. Identifying precipitating clouds in Greece using multispectral infrared Meteosat Second Generation satellite data[J]. Theoretical and Applied Climatology, 2011, 104(1-2): 25-42.

【7】Thies B, Nauss T, Bendix J. Discriminating raining from non-raining clouds at mid-latitudes using meteosat second generation daytime data[J]. Atmospheric Chemistry and Physics, 2008, 8(9): 2341-2349.

【8】Tebbi M A, Haddad B. Artificial intelligence systems for rainy areas detection and convective cells′ delineation for the south shore of Mediterranean Sea during day and nighttime using MSG satellite images[J]. Atmospheric Research, 2016, 178: 380-392.

【9】Meike K, Appelhans T, Thies B, et al. Precipitation Estimates from MSG SEVIRI Daytime, Nighttime, and Twilight Data with Random Forests[J]. Journal of Applied Meteorology and Climatology, 2014, 53(11): 2457-2480.

【10】Hirose H, Shige S, Yamamoto M K, et al. High temporal rainfall estimations from Himawari-8 multiband observations using the random-forest machine-learning method[J]. Journal of the Meteorological Society of Japan, 2019, 97(3): 689-710.

【11】Ebtehaj A M, Bras R L, Foufoula-Georgiou E. Shrunken Locally Linear Embedding for Passive Microwave Retrieval of Precipitation[J], IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3720-3736.

【12】王根, 王东勇, 吴蓉. Himawari-8/AHI红外光谱资料降水信号识别与反演初步应用研究[J]. 红外与毫米波学报, 2020, 39(2): 251-262.

【13】Yang J, Zhang Z, Wei C, et al. Introducing the new generation of Chinese geostationary weather satellites-FengYun 4 (FY-4)[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1637-1658.

【14】Sounak K B, Chandrasekar V. Cross-validation of observations between the GPM dual-frequency precipitation radar and ground based dual-polarization radars[J]. Remote Sensing, 2018, 10(11): 1773.

引用该论文

WANG Gen,LU Ya-jun,WANG Yue,WU Rui-jiao,DING Cong-hui. Research on Influence of Different Distance Measurements of KNN on Precipitation Retrieval by AGRI Infrared Bright Temperatures of FY-4A[J]. INFRARED, 2020, 41(4): 41-48

王根,陆雅君,王悦,吴瑞姣,丁从慧. KNN不同距离度量对FY-4A/AGRI红外亮温反演降水的影响研究[J]. 红外, 2020, 41(4): 41-48

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF