首页 > 论文 > 中国激光 > 47卷 > 5期(pp:500002--1)

航空航天高性能金属材料构件激光增材制造 (特邀综述) (封底文章)

Laser Additive Manufacturing of High-Performance Metallic Aerospace Components (Invited) (Back Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光增材制造技术是当今世界科技强国竞相发展的一项关键核心技术,为航空航天等领域高性能金属构件的设计与制造开辟了新的工艺技术途径。航空航天金属构件兼具轻量化、难加工、高性能等特征,对激光增材制造的材料设计、结构优化、工艺调控及性能和应用评价等均提出了严峻挑战。针对航空航天领域三类典型应用材料(即铝、钛、镍基合金及其金属基复合材料)、四类典型结构(大型金属结构、复杂整体结构、轻量化点阵结构、多功能仿生结构等),阐述了近年来国内外在面向激光增材制造的新材料制备、新结构设计、增材制造形性调控、高性能/多功能构件制造及航空航天应用等方面的研究进展,提出了高性能金属构件激光增材制造的宏/微观跨尺度形性协调机制,并就激光增材制造技术在材料-结构-工艺-性能一体化方向的研究及发展作一点思考与展望。

Abstract

Laser-additive manufacturing technology is a rapidly developing key technology for the today''s developed countries and pave a new technological way for the design and manufacture of high-performance metallic aerospace components. Metallic aerospace components have the characteristics of lightweight, difficult-to-process and high-performance, which poses significant challenges to the material design, structural optimization, process control, performance, and application evaluation of laser additive manufacturing. In this study, three categories of metallic materials typically applied in aerospace fields (i.e., Al-, Ti-, and Ni-based alloys and their metal matrix composites) and four kinds of typical structures (i.e., large-scale metal structure, complex integrated structure, lightweight lattice structure, and multi-functional bionic structure) are introduced. The recent research progress of laser additive manufacturing, both at home and abroad, in terms of new material preparation, new structure design, structure and performance control of laser additive manufacturing, high-performance/multi-functional components manufacturing, and aerospace applications, is presented. The coordination mechanisms of macro/micro cross-scale structure and performance control in laser additive manufacturing of high-performance metallic components are proposed. Furthermore, future research and development strategies of laser additive manufacturing technology in the direction of material-structure-process-performance integration are suggested.

广告组6 - 调制器
补充资料

中图分类号:TH164

DOI:10.3788/CJL202047.0500002

所属栏目:“纪念激光器诞生60周年”专题

基金项目:国家自然科学基金重点项目、国家重点研发计划、国家“万人计划”科技创新领军人才项目、装备预研领域基金重点项目、基础加强计划技术领域基金、江苏省第五期“333高层次人才培养工程”科研资助项目、江苏省第十五批“六大人才高峰”创新人才团队项目、2017年度江苏省高校优秀科技创新团队项目、国家自然科学基金创新研究群体项目;

收稿日期:2020-02-28

修改稿日期:2020-03-31

网络出版日期:2020-05-01

作者单位    点击查看

顾冬冬:南京航空航天大学材料科学与技术学院, 江苏 南京 210016江苏省高性能金属构件激光增材制造工程实验室, 江苏 南京 210016直升机传动技术国家级重点实验室, 江苏 南京 210016
张红梅:南京航空航天大学材料科学与技术学院, 江苏 南京 210016江苏省高性能金属构件激光增材制造工程实验室, 江苏 南京 210016
陈洪宇:南京航空航天大学材料科学与技术学院, 江苏 南京 210016江苏省高性能金属构件激光增材制造工程实验室, 江苏 南京 210016
张晗:南京航空航天大学材料科学与技术学院, 江苏 南京 210016江苏省高性能金属构件激光增材制造工程实验室, 江苏 南京 210016
席丽霞:南京航空航天大学材料科学与技术学院, 江苏 南京 210016江苏省高性能金属构件激光增材制造工程实验室, 江苏 南京 210016

联系人作者:顾冬冬(dongdonggu@nuaa.edu.cn)

备注:国家自然科学基金重点项目、国家重点研发计划、国家“万人计划”科技创新领军人才项目、装备预研领域基金重点项目、基础加强计划技术领域基金、江苏省第五期“333高层次人才培养工程”科研资助项目、江苏省第十五批“六大人才高峰”创新人才团队项目、2017年度江苏省高校优秀科技创新团队项目、国家自然科学基金创新研究群体项目;

【1】Wang H M, Zhang S Q, Wang X M. Progress and challenges of laser direct manufacturing of large titanium structural components(invited paper) [J]. Chinese Journal of Lasers. 2009, 36(12): 3204-3209.
王华明, 张述泉, 王向明. 大型钛合金结构件激光直接制造的进展与挑战(邀请论文) [J]. 中国激光. 2009, 36(12): 3204-3209.

【2】Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology Aeronautical Manufacturing Technology[J]. 0, 2013(13): 66-71.
巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 航空制造技术[J]. 0, 2013(13): 66-71.

【3】Babak K. Wohlers report 2016: 3D printing and additive manufacturing state of the industry [M]. [S.n.]: Wohlers Associates Incorporated. 2016.

【4】国家自然科学基金委员会工程与材料学部. 机械工程学科发展战略报告: 2011—2020[R]. 北京: 科学出版社, 2010.
Ministry of Engineering, Materials Science. National Natural Science Foundation of China, [M]. Development strategy report of mechanical engineering discipline (2011—2020). Beijing: Science Press, 2010.

【5】America Makes [2020-02-28].https:∥americamakes.us.[2020-02-28]. 0.

【6】Industrie 4.0.The future of industry - made in Germany [2020-02-28]. http:∥www.plattform-i40.de/I40/Navigation/EN/Home/home.html.[2020-02-28]. 0.

【7】”[EB/OL] [2020-02-28]. 2015-05-19) http:∥www.gov.cn/zhengce/content/2015-05/19/content_9784.htm. 2025.
-05-19)[2020-02-28] . http:∥www.gov.cn/zhengce/content/2015-05/19/content_9784.htm. 2015.

【8】-01-21)[2020-02-28] . http:∥www.most.gov.cn/mostinfo/xinxifenlei/fgzc/gfxwj/gfxwj2020/202003/t20200303_152074.htm. 2020.
-01-21)[2020-02-28] . http:∥www.most.gov.cn/mostinfo/xinxifenlei/fgzc/gfxwj/gfxwj2020/202003/t20200303_152074.htm. 2020.

【9】Lu B H, Li D C, Tian X Y. Development trends in additive manufacturing and 3D printing [J]. Engineering. 2015, 1(1): 85-89.

【10】Wang H M. Materials'''' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronautica et Astronautica Sinica. 2014, 35(10): 2690-2698.
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报. 2014, 35(10): 2690-2698.

【11】Huang W D, Lin X. Research progress in laser solid forming of high-performance metallic components at the state key laboratory of solidification processing of China [J]. 3D Printing and Additive Manufacturing. 2014, 1(3): 156-165.

【12】Yang Y Q, Wang D, Wu W H. Research progress of direct manufacturing of metal parts by selective laser melting [J]. Chinese Journal of Lasers. 2011, 38(6): 0601007.
杨永强, 王迪, 吴伟辉. 金属零件选区激光熔化直接成型技术研究进展 [J]. 中国激光. 2011, 38(6): 0601007.

【13】Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms [J]. International Materials Reviews. 2012, 57(3): 133-164.

【14】Gu D D, Shen Y F. Research status and technical prospect of rapid manufacturing of metallic part by selective laser melting Aeronautical Manufacturing Technology[J]. 0, 2012(8): 32-37.
顾冬冬, 沈以赴. 基于选区激光熔化的金属零件快速成形现状与技术展望 航空制造技术[J]. 0, 2012(8): 32-37.

【15】MacDonald E. 353(6307): aaf2093 [J]. Wicker R. Multiprocess 3D printing for increasing component functionality. Science. 2016.

【16】Lu K. The future of metals [J]. Science. 2010, 328(5976): 319-320.

【17】Mortensen A, Llorca J. Metal matrix composites [J]. Annual Review of Materials Research. 2010, 40(1): 243-270.

【18】Bourell D L, Rosen D W, Leu M C. The roadmap for additive manufacturing and its impact [J]. 3D Printing and Additive Manufacturing. 2014, 1(1): 6-9.

【19】Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting [J]. Progress in Materials Science. 2019, 106: 100578.

【20】Olakanmi E O, Cochrane R F, Dalgarno K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties [J]. Progress in Materials Science. 2015, 74: 401-477.

【21】Louvis E, Fox P, Sutcliffe C J. Selective laser melting of aluminium components [J]. Journal of Materials Processing Technology. 2011, 211(2): 275-284.

【22】Prashanth K G, Scudino S, Klauss H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: effect of heat treatment [J]. Materials Science and Engineering: A. 2014, 590: 153-160.

【23】Wu J, Wang X Q, Wang W, et al. Microstructure and strength of selectively laser melted AlSi10Mg [J]. Acta Materialia. 2016, 117: 311-320.

【24】Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder [J]. Acta Materialia. 2013, 61(5): 1809-1819.

【25】Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development [J]. Materials & Design (1980—2015). 2015, 65: 417-424.

【26】Suryawanshi J, Prashanth K G, Scudino S, et al. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting [J]. Acta Materialia. 2016, 115: 285-294.

【27】Wang L F, Jiang X H, Zhu Y H, et al. Investigation of performance and residual stress generation of AlSi10Mg processed by selective laser melting [J]. Advances in Materials Science and Engineering. 2018, 2018: 1-12.

【28】Kempen K. Thijs L,van Humbeeck J, et al. Mechanical properties of AlSi10Mg produced by selective laser melting [J]. Physics Procedia. 2012, 39: 439-446.

【29】Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism [J]. Materials Science and Engineering: A. 2016, 663: 116-125.

【30】Rashid R, Masood S H, Ruan D, et al. Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy [J]. Additive Manufacturing. 2018, 22: 426-439.

【31】Zhang H, Zhu H H, Qi T, et al. Selective laser melting of high strength Al-Cu-Mg alloys: processing, microstructure and mechanical properties [J]. Materials Science and Engineering: A. 2016, 656: 47-54.

【32】Wang P, Gammer C, Brenne F, et al. Microstructure and mechanical properties of a heat-treatable Al-3.5Cu-1.5Mg-1Si alloy produced by selective laser melting [J]. Materials Science and Engineering: A. 2018, 711: 562-570.

【33】Spierings A B, Dawson K, Kern K, et al. SLM-processed Sc- and Zr- modified Al-Mg alloy: mechanical properties and microstructural effects of heat treatment [J]. Materials Science and Engineering: A. 2017, 701: 264-273.

【34】Reschetnik W, Brüggemann J P, Aydin?z M E, et al. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy [J]. Procedia Structural Integrity. 2016, 2: 3040-3048.

【35】Jiang L Y, Liu T T, Zhang C D, et al. Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting [J]. Materials Science and Engineering: A. 2018, 734: 171-177.

【36】Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature. 2017, 549(7672): 365-369.

【37】Gu D D, Wang H Q, Dai D H, et al. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting [J]. Scripta Materialia. 2015, 96: 25-28.

【38】Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility [J]. Acta Materialia. 2017, 129: 183-193.

【39】Spierings A B, Dawson K, Heeling T, et al. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting [J]. Materials & Design. 2017, 115: 52-63.

【40】Gu D D, Rao X W, Dai D H, et al. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: processing optimization, microstructure evolution and mechanical properties [J]. Additive Manufacturing. 2019, 29: 100801.

【41】Yu W H, Sing S L, Chua C K, et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting:a state of the art review [J]. Progress in Materials Science. 2019, 104: 330-379.

【42】Gu D D, Chang F, Dai D H. Selective laser melting additive manufacturing of novel aluminum based composites with multiple reinforcing phases [J]. Journal of Manufacturing Science and Engineering. 2015, 137(2): 021010.

【43】Xi L X, Zhang H, Wang P, et al. Comparative investigation of microstructure, mechanical properties and strengthening mechanisms of Al-12Si/TiB2 fabricated by selective laser melting and hot pressing [J]. Ceramics International. 2018, 44(15): 17635-17642.

【44】Dai D H, Gu D D. Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites [J]. International Journal of Machine Tools and Manufacture. 2016, 100: 14-24.

【45】Jue J B, Gu D D, Chang K, et al. Microstructure evolution and mechanical properties of Al-Al2O3 composites fabricated by selective laser melting [J]. Powder Technology. 2017, 310: 80-91.

【46】Lin T C, Cao C Z, Sokoluk M, et al. Aluminum with dispersed nanoparticles by laser additive manufacturing [J]. Nature Communications. 2019, 10: 4124.

【47】Shipley H. McDonnell D, Culleton M, et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review [J]. International Journal of Machine Tools and Manufacture. 2018, 128: 1-20.

【48】Pauly S, Wang P, Kühn U, et al. Experimental determination of cooling rates in selectively laser-melted eutectic Al-33Cu [J]. Additive Manufacturing. 2018, 22: 753-757.

【49】Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: a review [J]. Materials & Design. 2019, 164: 107552.

【50】Leuders S, Th?ne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: fatigue resistance and crack growth performance [J]. International Journal of Fatigue. 2013, 48: 300-307.

【51】Gu D D, Hagedorn Y C, Meiners W, et al. Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium [J]. Acta Materialia. 2012, 60(9): 3849-3860.

【52】Attar H, Calin M, Zhang L C, et al. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium [J]. Materials Science and Engineering: A. 2014, 593: 170-177.

【53】Thijs L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V [J]. Acta Materialia. 2010, 58(9): 3303-3312.

【54】Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Materialia. 2015, 85: 74-84.

【55】Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing [J]. Acta Materialia. 2015, 87: 309-320.

【56】Zhang Y Z, Wei Z M, Shi L K, et al. Characterization of laser powder deposited Ti-TiC composites and functional gradient materials [J]. Journal of Materials Processing Technology. 2008, 206(1/2/3): 438-444.

【57】Facchini L, Magalini E, Robotti P, et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders [J]. Rapid Prototyping Journal. 2010, 16(6): 450-459.

【58】Vilaro T, Colin C, Bartout J D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting [J]. Metallurgical and Materials Transactions A. 2011, 42(10): 3190-3199.

【59】Qiu C L. Adkins N J E, Attallah M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V [J]. Materials Science and Engineering: A. 2013, 578: 230-239.

【60】Yu J, Rombouts M, Maes G, et al. Material properties of Ti6Al4V parts produced by laser metal deposition [J]. Physics Procedia. 2012, 39: 416-424.

【61】Zhou L B, Yuan T C, Li R D, et al. Anisotropic mechanical behavior of biomedical Ti-13Nb-13Zr alloy manufactured by selective laser melting [J]. Journal of Alloys and Compounds. 2018, 762: 289-300.

【62】Wei K W, Wang Z M, Li F Z, et al. Densification behavior, microstructure evolution, and mechanical performances of selective laser melted Ti-5Al-2.5Sn α titanium alloy: effect of laser energy input [J]. Journal of Alloys and Compounds. 2019, 774: 1024-1035.

【63】Yan L M, Yuan Y W, Ouyang L, et al. Improved mechanical properties of the new Ti-15Ta-xZr alloys fabricated by selective laser melting for biomedical application [J]. Journal of Alloys and Compounds. 2016, 688: 156-162.

【64】Schwab H, Palm F, Kühn U, et al. Microstructure and mechanical properties of the near-beta titanium alloy Ti-5553 processed by selective laser melting [J]. Materials & Design. 2016, 105: 75-80.

【65】Ren H S, Tian X J, Liu D, et al. Microstructural evolution and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy [J]. Transactions of Nonferrous Metals Society of China. 2015, 25(6): 1856-1864.

【66】Xue A T, Lin X, Wang L L, et al. Influence of trace boron addition on microstructure, tensile properties and their anisotropy of Ti6Al4V fabricated by laser directed energy deposition [J]. Materials & Design. 2019, 181: 107943.

【67】Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature. 2019, 576(7785): 91-95.

【68】Barriobero-Vila P, Gussone J, Stark A, et al. Peritectic titanium alloys for 3D printing [J]. Nature Communications. 2018, 9: 3426.

【69】Todaro C J, Easton M A, Qiu D, et al. Grain structure control during metal 3D printing by high-intensity ultrasound [J]. Nature Communications. 2020, 11: 142.

【70】Liu S Y, Shin Y C. The influences of melting degree of TiC reinforcements on microstructure and mechanical properties of laser direct deposited Ti6Al4V-TiC composites [J]. Materials & Design. 2017, 136: 185-195.

【71】Gu D D, Hagedorn Y C, Meiners W, et al. Nanocrystalline TiC reinforced Ti matrix bulk-form nanocomposites by selective laser melting (SLM): densification, growth mechanism and wear behavior [J]. Composites Science and Technology. 2011, 71(13): 1612-1620.

【72】Gu D D, Wang H Q, Zhang G Q. Selective laser melting additive manufacturing of Ti-based nanocomposites: the role of nanopowder [J]. Metallurgical and Materials Transactions A. 2014, 45(1): 464-476.

【73】Attar H, B?nisch M, Calin M, et al. Selective laser melting of in situ titanium-titanium boride composites: processing, microstructure and mechanical properties [J]. Acta Materialia. 2014, 76: 13-22.

【74】Shao S, Khonsari M M, Guo S, et al. Overview:additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life [J]. Additive Manufacturing. 2019, 29: 100779.

【75】Carter L N, Martin C, Withers P J, et al. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy [J]. Journal of Alloys and Compounds. 2014, 615: 338-347.

【76】Brenne F, Taube A, Pr?bstle M, et al. Microstructural design of Ni-base alloys for high-temperature applications: impact of heat treatment on microstructure and mechanical properties after selective laser melting [J]. Progress in Additive Manufacturing. 2016, 1(3/4): 141-151.

【77】Ma M M, Wang Z M, Zeng X Y. Effect of energy input on microstructural evolution of direct laser fabricated IN718 alloy [J]. Materials Characterization. 2015, 106: 420-427.

【78】Wan H Y, Zhou Z J, Li C P, et al. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting [J]. Journal of Materials Science & Technology. 2018, 34(10): 1799-1804.

【79】Zhang F, Levine L E, Allen A J, et al. Effect of heat treatment on the microstructural evolution of a nickel-based superalloy additive-manufactured by laser powder bed fusion [J]. Acta Materialia. 2018, 152: 200-214.

【80】Sui S, Tan H, Chen J, et al. The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing [J]. Acta Materialia. 2019, 164: 413-427.

【81】Chlebus E, Gruber K, Kuznicka B, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting [J]. Materials Science and Engineering: A. 2015, 639: 647-655.

【82】Zhang D Y, Feng Z, Wang C J, et al. Comparison of microstructures and mechanical properties of Inconel 718 alloy processed by selective laser melting and casting [J]. Materials Science and Engineering: A. 2018, 724: 357-367.

【83】Zhang Y C, Yang L, Lu W Z, et al. Microstructure and elevated temperature mechanical properties of IN718 alloy fabricated by laser metal deposition [J]. Materials Science and Engineering: A. 2020, 771: 138580.

【84】Nguejio J, Szmytka F, Hallais S, et al. Comparison of microstructure features and mechanical properties for additive manufactured and wrought nickel alloys 625 [J]. Materials Science and Engineering: A. 2019, 764: 138214.

【85】Hu Y L, Lin X, Zhang S Y, et al. Effect of solution heat treatment on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by laser solid forming [J]. Journal of Alloys and Compounds. 2018, 767: 330-344.

【86】Wang H, Zhang X, Wang G B, et al. Selective laser melting of the hard-to-weld IN738LC superalloy: efforts to mitigate defects and the resultant microstructural and mechanical properties [J]. Journal of Alloys and Compounds. 2019, 807: 151662.

【87】Xu J J, Lin X, Guo P F, et al. The effect of preheating on microstructure and mechanical properties of laser solid forming IN-738LC alloy [J]. Materials Science and Engineering: A. 2017, 691: 71-80.

【88】Tomus D, Tian Y, Rometsch P A, et al. Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting [J]. Materials Science and Engineering: A. 2016, 667: 42-53.

【89】Chen Z, Chen S G, Wei Z Y, et al. Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting [J]. Progress in Natural Science: Materials International. 2018, 28(4): 496-504.

【90】Wang X Q, Carter L N, Pang B, et al. Microstructure and yield strength of SLM-fabricated CM247LC Ni-superalloy [J]. Acta Materialia. 2017, 128: 87-95.

【91】Xia M J, Gu D D, Ma C L, et al. Microstructure evolution, mechanical response and underlying thermodynamic mechanism of multi-phase strengthening WC/Inconel 718 composites using selective laser melting [J]. Journal of Alloys and Compounds. 2018, 747: 684-695.

【92】Yao X L, Moon S K, Lee B Y, et al. Effects of heat treatment on microstructures and tensile properties of IN718/TiC nanocomposite fabricated by selective laser melting [J]. International Journal of Precision Engineering and Manufacturing. 2017, 18(12): 1693-1701.

【93】Chen Z, Wei P, Zhang S Z, et al. Graphene reinforced nickel-based superalloy composites fabricated by additive manufacturing [J]. Materials Science and Engineering: A. 2020, 769: 138484.

【94】Zhang B C, Bi G J, Chew Y, et al. Comparison of carbon-based reinforcement on laser aided additive manufacturing Inconel 625 composites [J]. Applied Surface Science. 2019, 490: 522-534.

【95】Ma C, Chen L Y, Cao C Z, et al. Nanoparticle-induced unusual melting and solidification behaviours of metals [J]. Nature Communications. 2017, 8: 14178.

【96】Rong T, Gu D D. Formation of novel graded interface and its function on mechanical properties of WC1-x reinforced Inconel 718 composites processed by selective laser melting [J]. Journal of Alloys and Compounds. 2016, 680: 333-342.

【97】Shi Q M, Gu D D, Lin K J, et al. The role of reinforcing particle size in tailoring interfacial microstructure and wear performance of selective laser melting WC/Inconel 718 composites [J]. Journal of Manufacturing Science and Engineering. 2018, 140(11): 111019.

【98】Gu D D, Ma J, Chen H Y, et al. Laser additive manufactured WC reinforced Fe-based composites with gradient reinforcement/matrix interface and enhanced performance [J]. Composite Structures. 2018, 192: 387-396.

【99】AlMangour B, Baek M S, Grzesiak D, et al. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting [J]. Materials Science and Engineering: A. 2018, 712: 812-818.

【100】Ho I T, Chen Y T, Yeh A C, et al. Microstructure evolution induced by inoculants during the selective laser melting of IN718 [J]. Additive Manufacturing. 2018, 21: 465-471.

【101】Gu D D, Cao S N, Lin K J. Laser metal deposition additive manufacturing of TiC reinforced inconel 625 composites: influence of the additive TiC particle and its starting size [J]. Journal of Manufacturing Science and Engineering. 2017, 139(4): 011014.

【102】Zhang H M, Gu D D, Ma C L, et al. Surface wettability and superhydrophobic characteristics of Ni-based nanocomposites fabricated by selective laser melting [J]. Applied Surface Science. 2019, 476: 151-160.

【103】Todd I. Printing steels [J]. Nature Materials. 2018, 17(1): 13-14.

【104】Wang H M, Zhang S Q, Wang T, et al. Progress on solidification grain morphology and microstructure control of laser additively manufactured large titanium components [J]. Journal of Xihua University(Natural Science Edition). 2018, 37(4): 9-14.
王华明, 张述泉, 王韬, 等. 激光增材制造高性能大型钛合金构件凝固晶粒形态及显微组织控制研究进展 [J]. 西华大学学报(自然科学版). 2018, 37(4): 9-14.

【105】Lin X, Huang W D. Laser additive manufacturing of high-performance metal components [J]. Scientia Sinica(Informationis). 2015, 45(9): 1111-1126.
林鑫, 黄卫东. 高性能金属构件的激光增材制造 [J]. 中国科学:信息科学. 2015, 45(9): 1111-1126.

【106】Rhian J. NASA. -07-12)[2020-02-28] . https:∥www.americaspace.com/2013/07/12/nasa-aerojet-rocketdyne-test-3d-printed-rocket-engine-component/. 2013.

【107】-04-21)[2020-02-28] . https:∥www.nasa.gov/marshall/news/nasa-3-D-prints-first-full-scale-copper-rocket-engine-part.html. 2015.

【108】-04-22)[2020-02-28] . https:∥3dprint.com/59881/nasa-3d-prints-copper-rocket/. 2015.

【109】next-gen materials[EB/OL]. -06-23)[2020-02-28] . https:∥www.ge.com/reports/post/80701924024/fit-to-print/. 2014.

【110】Fundamentals of additive manufacturing lesson 3: AM case study: GE LEAP fuel nozzle [2020-02-28].https:∥www.niu.edu/ceet/departments/mechanical-engineering/msam/sciammarella-fam4.pdf.[2020-02-28]. 0.

【111】Tancogne-Dejean T, Spierings A B, Mohr D. Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading [J]. Acta Materialia. 2016, 116: 14-28.

【112】Latture R M, Rodriguez R X, Holmes L R. Jr, et al. Effects of nodal fillets and external boundaries on compressive response of an octet truss [J]. Acta Materialia. 2018, 149: 78-87.

【113】Pham M S, Liu C, Todd I, et al. Damage-tolerant architected materials inspired by crystal microstructure [J]. Nature. 2019, 565(7739): 305-311.

【114】Panesar A, Abdi M, Hickman D, et al. Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing [J]. Additive Manufacturing. 2018, 19: 81-94.

【115】-03-03)[2020-02-28] . https:∥www.airbus.com/newsroom/news/en/2016/03/Pioneering-bionic-3D-printing.html. 2016.

【116】-02-18)[2020-02-28] . https:∥www.airbus.com/newsroom/news/en/2017/02/Material-evolution.html. 2017.

【117】Lau W. The living. -01-21) . https:∥www.architectmagazine.com/technology/the-living-and-autodesk-apply-bionic-design-to-an-airbus-320-partition_o. 2016.

【118】Pawlyn M. Push the limits of 3D printing [J]. Nature. 2013, 494(7436): 174.

【119】Zhang C Q. McAdams D A II, Grunlan J C. Nano/micro-manufacturing of bioinspired materials: a review of methods to mimic natural structures [J]. Advanced Materials. 2016, 28(30): 6292-6321.

【120】Huebsch N, Mooney D J. Inspiration and application in the evolution of biomaterials [J]. Nature. 2009, 462(7272): 426-432.

【121】Omenetto F G, Kaplan D L. New opportunities for an ancient material [J]. Science. 2010, 329(5991): 528-531.

【122】Yang J K, Gu D D, Lin K J, et al. Optimization of bio-inspired bi-directionally corrugated panel impact-resistance structures: numerical simulation and selective laser melting process [J]. Journal of the Mechanical Behavior of Biomedical Materials. 2019, 91: 59-67.

【123】Yang J K, Gu D D, Lin K J, et al. Laser 3D printed bio-inspired impact resistant structure: failure mechanism under compressive loading [J]. Virtual and Physical Prototyping. 2020, 15(1): 75-86.

【124】Schieber G, Koslowski V, Knippers J, et al. Integrated design and fabrication strategies for fibrous structures[M]. ∥Modelling Behaviour: , 2015, 237-245.

【125】Wang H R, Gu D D, Lin K J, et al. Compressive properties of bio-inspired reticulated shell structures processed by selective laser melting [J]. Advanced Engineering Materials. 2019, 21(4): 1801168.

【126】Ma C L, Gu D D, Lin K J, et al. Selective laser melting additive manufacturing of cancer pagurus''''s claw inspired bionic structures with high strength and toughness [J]. Applied Surface Science. 2019, 469: 647-656.

【127】Lin K J, Hu K M, Gu D D. Metallic integrated thermal protection structures inspired by the Norway spruce stem: design, numerical simulation and selective laser melting fabrication [J]. Optics & Laser Technology. 2019, 115: 9-19.

【128】Hu K M, Lin K J, Gu D D, et al. Mechanical properties and deformation behavior under compressive loading of selective laser melting processed bio-inspired sandwich structures [J]. Materials Science and Engineering: A. 2019, 762: 138089.

引用该论文

Gu Dongdong,Zhang Hongmei,Chen Hongyu,Zhang Han,Xi Lixia. Laser Additive Manufacturing of High-Performance Metallic Aerospace Components[J]. Chinese Journal of Lasers, 2020, 47(5): 0500002

顾冬冬,张红梅,陈洪宇,张晗,席丽霞. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 0500002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF