首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1034002--1)

基于荧光发射的低原子序数软X射线吸收谱方法

Soft X-Ray Absorption Spectroscopy of Low Z Element Based on Fluorescence Emission

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

同步辐射 X 射线吸收谱方法是基于同步辐射光源研究物质结构的重要谱学技术,可以用来获取原子的价态、电子态和周围原子的种类、数量及局域结构等信息[1-3]。基于部分荧光产额(PFY)的X射线吸收谱方法通过在元素吸收边附近扫描入射光子能量,同时采用具有能量分辨的探测器来收集样品发出的荧光信号,样品出射的荧光信号会随着入射光能量的变化而变化,因而感兴趣元素在每个能量点的荧光信号被探测和记录下来形成吸收谱线。基于PFY的同步辐射 X 射线吸收谱方法能够对物质进行元素分布分析和原位测定,具有高灵敏度、低检出限和无损检测等特点[4-6]。目前,PFY方法主要应用在硬X射线领域(光子能量大于4000 eV),一方面是由于荧光发射产额随着原子序数的增大而增加[7],而早期荧光探测器的灵敏度有限,所以通常选择高原子序数Z(Z>10)元素作为研究对象,这些元素的芯态能级通常在数千eV以上;另一方面,硬X射线的工作能区所提供的样品测量的便利性,诸如大气条件、易于施加高低温、高压等各种原位环境,也使得PFY方法在硬X能区便于开展。

Abstract

We establish a measurement system based on low atomic number absorption spectrum of fluorescence emission via the beamline station 08U1A of Shanghai Synchrotron Radiation Source, and explore the partial fluorescence yield (PFY) based on absorption method. The feasibility and applicability of this setup is verified on low Z elements in soft condensed matter and semiconductor areas. The research objects of CF4 gas and iodine methylamine lead (CH3NH3PbI3) verify the feasibility of PFY absorption spectroscopy. Then the low limit of sensitivity to sample concentration is determined.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1034002

所属栏目:X射线光学

基金项目:国家科技部项目、国家自然科学基金;

收稿日期:2019-04-16

修改稿日期:2019-06-24

网络出版日期:2019-10-01

作者单位    点击查看

李俊琴:中国科学院上海应用物理研究所, 上海 201800中国科学院上海高等研究院,张江实验室,上海光源科学中心, 上海 201204
陈振华:中国科学院上海应用物理研究所, 上海 201800中国科学院上海高等研究院,张江实验室,上海光源科学中心, 上海 201204
赵子龙:中国科学院上海应用物理研究所, 上海 201800中国科学院上海高等研究院,张江实验室,上海光源科学中心, 上海 201204
邹鹰:中国科学院上海应用物理研究所, 上海 201800中国科学院上海高等研究院,张江实验室,上海光源科学中心, 上海 201204
王勇:中国科学院上海应用物理研究所, 上海 201800中国科学院上海高等研究院,张江实验室,上海光源科学中心, 上海 201204
邰仁忠:中国科学院上海应用物理研究所, 上海 201800中国科学院上海高等研究院,张江实验室,上海光源科学中心, 上海 201204

联系人作者:邹鹰(zouying@zjlab.org.cn); 王勇(wangyong@zjlab.org.cn); 邰仁忠(tairenzhong@zjlab.org.cn);

备注:国家科技部项目、国家自然科学基金;

【1】Wang Q W and Liu W H. X-ray absorption fine structure and its application. 52-139(1994).
王其武, 刘文汉. X射线吸收精细结构及其应用. 52-139(1994).

【2】Lytle F W, Sayers D E and Stern E A. Report of the international workshop on standards and criteria in X-ray absorption spectroscopy. Physica B: Condensed Matter. 158(1/2/3), 701-722(1989).

【3】Uo M, Asakura K, Yokoyama A et al. Analysis of titanium dental implants surrounding soft tissue using X-ray absorption fine structure (XAFS) analysis. Chemistry Letters. 34(6), 776-777(2005).

【4】Oprea C, Szalanski P J, Gustova M V et al. XRF detection limits for dental tissues of human teeth. Vacuum. 83(S1), S166-S168(2009).

【5】Hu T, Hua W Q, Wang Y D et al. Small-angle X-ray scattering tomography based on micro-focusing Kirkpatrick-Baez mirrors. Acta Optica Sinica. 38(1), (2018).
胡涛, 滑文强, 王玉丹 等. 基于Kirkpatrick-Baez镜聚焦的X射线小角散射显微层析成像. 光学学报. 38(1), (2018).

【6】Ran J, Wang D J, Wang C et al. Comparison of soil heavy metals determined by AAS/AFS and portable X-ray fluorescence analysis. Spectroscopy and Spectral Analysis. 34(11), 3113-3118(2014).

【7】H?m?l?inen K, Siddons D P, Hastings J B et al. Elimination of the inner-shell lifetime broadening in X-ray-absorption spectroscopy. Physical Review Letters. 67(20), 2850-2853(1991).

【8】Asakura D, Hosono E, Nanba Y et al. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries. AIP Advances. 6(3), (2016).

【9】Tamenori Y, Morita M and Nakamura T. Two-dimensional approach to fluorescence yield XANES measurement using a silicon drift detector. Journal of Synchrotron Radiation. 18(5), 747-752(2011).

【10】Achkar A J, Regier T Z, Monkman E J et al. Determination of total X-ray absorption coefficient using non-resonant X-ray emission. Scientific Reports. 1, (2011).

【11】Chen Z H, Li J Q, Zhao Z L et al. Establishment and application of testing method for fluorescence based soft X-ray absorption spectrum. Acta Optica Sinica. 39(3), (2019).
陈振华, 李俊琴, 赵子龙 等. 软X射线荧光吸收谱测试方法的建立与应用. 光学学报. 39(3), (2019).

【12】Yang S L, Wang D N, Liang G X et al. Soft X-ray XANES studies of various phases related to LiFePO4 based cathode materials. Energy & Environmental Science. 5(5), 7007-7016(2012).

【13】Zhang L J, Xu Z J, Zhang X Z et al. Latest advances in soft X-ray spectromicroscopy at SSRF. Nuclear Science and Techniques. 26(4), (2015).

【14】Yuan J and Luo L Q. Synchrotron μ-XRF and XAFS in element distribution and speciation of air, soil and biological samples. Nuclear Techniques. 37(8), (2014).
袁静, 罗立强. 同步辐射微区X射线荧光和吸收谱技术在大气、土壤和动植物分析中的应用. 核技术. 37(8), (2014).

【15】Cho S H and Tong H Y. McGee J K, et al. Comparative toxicity of size-fractionated airborne particulate matter collected at different distances from an urban highway. Environmental Health Perspectives. 117(11), 1682-1689(2009).

【16】Hitchcock A P, Mancini D C. Bibliography and Related Phenomena. 67(1): vii. (1994).

引用该论文

Junqin Li,Zhenhua Chen,Zilong Zhao,Ying Zou,Yong Wang,Renzhong Tai. Soft X-Ray Absorption Spectroscopy of Low Z Element Based on Fluorescence Emission[J]. Acta Optica Sinica, 2019, 39(10): 1034002

李俊琴,陈振华,赵子龙,邹鹰,王勇,邰仁忠. 基于荧光发射的低原子序数软X射线吸收谱方法[J]. 光学学报, 2019, 39(10): 1034002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF