首页 > 论文 > 中国激光 > 46卷 > 8期(pp:806005--1)

基于张量模式噪声补偿的室内可见光通信系统的信道估计

Channel Estimation of Indoor Visible Light Communication System with Tensor Mode Noise Compensation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对现有中继转发式室内可见光通信系统中信道估计算法存在的导频数量过大、估计效率和精度低的问题,提出基于张量模式噪声补偿的信道估计方法。首先,充分利用可见光通信系统发射数据的特点设计了一种适合在接收数据中进行噪声补偿的导频结构。然后,在PARATUCK2张量分解框架下,构造了这种导频模式的含噪通信系统模型。最后,结合张量分解方法,设计了一种以导频所得噪声补偿对实际噪声进行估计的方法,完成所有信道参数的计算。仿真实验结果表明,将基于张量模式噪声补偿的估计算法应用在中继转发式室内可见光通信系统中,可以在加快寻优迭代速度的同时提高估计精确度,充分验证该算法的有效性和可行性。

Abstract

Aiming at the problem of large number of pilots and low efficiency and accuracy in existing channel estimation algorithms of relay-and-forward indoor visible light communication systems, a channel estimation method based on tensor mode noise compensation is proposed. Firstly, a pilot structure which is suitable for noise compensation for the received data is designed by making the best of the characteristics of the transmission data structure in visible light communication. Then, according to the framework of PARATUCK2 tensor decomposition, a communication system with noise model of this pilot mode is constructed. Finally, combined with the tensor decomposition method, a method of estimating the real noise with noise compensation of pilot frequency is designed, and all channel parameters are estimated. The simulation results show that the estimation algorithm based on tensor mode noise compensation can be applied to the relay-and-forward indoor visible light communication system, accelerate the iteration speed, and improve the estimation accuracy, which fully verifies the effectiveness and feasibility of the algorithm.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0806005

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金、吉林省科技发展计划 、吉林省教育科学技术厅项目;

收稿日期:2019-03-07

修改稿日期:2019-04-15

网络出版日期:2019-08-01

作者单位    点击查看

王青竹:东北电力大学计算机学院, 吉林 吉林 132012
于永澔:东北电力大学电气工程学院, 吉林 吉林 132012
朱艺海:中车长春轨道客车股份有限公司工程技术中心, 吉林 长春 130052

联系人作者:王青竹(Yuppy32588@163.com)

备注:国家自然科学基金、吉林省科技发展计划 、吉林省教育科学技术厅项目;

【1】Boucouvalas A, Chatzimisios P, Ghassemlooy Z et al. Standards for indoor optical wireless communications. IEEE Communications Magazine. 53(3), 24-31(2015).

【2】Singh C, John J, Singh Y N et al. A review of indoor optical wireless systems. IETE Technical Review. 19(1/2), 3-17(2002).

【3】Yesilkaya A, Basar E, Miramirkhani F et al. Optical MIMO-OFDM with generalized LED index modulation. IEEE Transactions on Communications. 65(8), 3429-3441(2017).

【4】Gheth W, Rabie K M, Adebisi B et al. Performance analysis of integrated power-line/visible-light communication systems with AF relaying. [C]∥2018 IEEE Global Communications Conference (GLOBECOM), December 9-13, 2018, Abu Dhabi, United Arab Emirates. New York: IEEE. 18476212, (2018).

【5】Kim B W and Jung S Y. Channel capacity of the distributed MIMO relay in visible light communication systems. Photonic Network Communications. 34(2), 298-305(2017).

【6】Akbarpour-Kasgari A and Ardebilipour M. Pilot allocation approaches for channel estimation in MIMO relay networks. IET Communications. 12(16), 2030-2037(2018).

【7】Chen Y, Yin H and Liu H L. Adaptive channel estimation for MIMO-OFDM visible light communication system. Chinese Journal of Lasers. 43(9), (2016).
陈勇, 尹辉, 刘焕淋. MIMO-OFDM可见光通信系统的自适应信道估计. 中国激光. 43(9), (2016).

【8】Hong Y, Wu T S and Chen L K. On the performance of adaptive MIMO-OFDM indoor visible light communications. IEEE Photonics Technology Letters. 28(8), 907-910(2016).

【9】Jayanthi P N and Ravishankar S. Sparse channel estimation for MIMO-OFDM systems using compressed sensing. [C]∥2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), May 20-21, 2016, Bangalore, India. New York: IEEE. 16582867, (2016).

【10】Kolda T G and Bader B W. Tensor decompositions and applications. SIAM Review. 51(3), 455-500(2009).

【11】Liu Y, Li S Z and Mu X M. Semi-blind channel estimation analysis of MIMO systems via tensor decompose. Journal of Signal Processing. 32(1), 63-69(2016).
刘越, 李双志, 穆晓敏. MIMO系统中应用张量分解进行半盲信道估计的算法分析. 信号处理. 32(1), 63-69(2016).

【12】Comon P. Luciani X, de Almeida A L F. Tensor decompositions, alternating least squares and other tales. Journal of Chemometrics. 23(7/8), 393-405(2009).

【13】Naskovska K. Haardt M, de Almeida A L F. Generalized tensor contraction with application to Khatri-Rao coded MIMO OFDM systems. [C]∥2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), December 10-13, 2017, Curacao. New York: IEEE. 17630695, (2017).

【14】Du J H, Lin H Y, Yuan C W et al. Channel estimation for multi-input multi-output relay systems using the PARATUCK2 tensor model. IET Communications. 10(9), 995-1002(2016).

【15】Fan L, Jia L J, Tao R et al. Distributed bias-compensated normalized least-mean squares algorithms with noisy input. Science China Information Sciences. 61(11), (2018).

【16】Halvorsen K. Bias compensated least squares estimate of the center of rotation. Journal of Biomechanics. 36(7), 999-1008(2003).

【17】Na Z Y, Wang Y Y, Xiong M D et al. Modeling and throughput analysis of an ADO-OFDM based relay-assisted VLC system for 5 G networks. IEEE Access. 6, 17586-17594(2018).

【18】Zhao L and Peng K. Optimization of light source layout in indoor visible light communication based on white light-emitting diode. Acta Optica Sinica. 37(7), (2017).
赵黎, 彭恺. 基于白光发光二极管的室内可见光通信光源布局优化. 光学学报. 37(7), (2017).

【19】Akbarpour-Kasgari A and Ardebilipour M. Probability-based pilot allocation for MIMO relay distributed compressed sensing channel estimation. EURASIP Journal on Advances in Signal Processing. 2018, (2018).

【20】PARATUCK-N semi-blind receivers for multi-hop cooperative MIMO relay system. Fortaleza: Universidade Federal do Ceará. (2017).

引用该论文

Qingzhu Wang, Yonghao Yu, Yihai Zhu. Channel Estimation of Indoor Visible Light Communication System with Tensor Mode Noise Compensation[J]. Chinese Journal of Lasers, 2019, 46(8): 0806005

王青竹, 于永澔, 朱艺海. 基于张量模式噪声补偿的室内可见光通信系统的信道估计[J]. 中国激光, 2019, 46(8): 0806005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF