首页 > 论文 > 光学学报 > 39卷 > 11期(pp:1134001--1)

基于球面晶体的高光谱分辨全视场X射线荧光成像

Spherical Crystal Based on X-Ray Fluorescence Imaging with High Spectral Resolution and Full Field of View

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于球面晶体的高光谱分辨全视场X射线荧光成像仪,并分析了该成像系统的空间分辨率、视场、能谱带宽、荧光收集效率。根据理论分析设计了一套用于V~Zn等典型中等原子序数金属的Kα线荧光成像系统,并采用解析的理论和本课题组编写的蒙特卡罗光线追迹程序对该系统性能进行了计算和仿真。理论分析和数值仿真的结果表明,这种X射线荧光成像技术具有较高的空间分辨率(优于80 μm)、较大的视场(大于6.5 mm)以及极高的光谱(能谱)分辨率(优于16.5 eV@4.6~9 keV)。

Abstract

In this study, we propose a spherical crystal based on X-ray fluorescence imaging system with high spectral resolution and full field of view (FOV). Further, the spatial resolution, FOV, spectral bandwidth, and photon collection efficiency are analyzed. Next, we present the design of the fluorescence imaging system for the Kα emission of a metal (V-Zn) with median atomic number according to the theoretical analysis, and the analytic theory and a custom-written Monte Carlo ray-tracing code are used in calculation and simulation. Our theoretical analysis and simulation demonstrate that the X-ray fluorescence imaging technique exhibits a high spatial resolution (6.5 mm), and high spectral resolution (<16.5 eV@4.6-9 keV).

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1134001

所属栏目:X射线光学

基金项目:国家自然科学基金;

收稿日期:2019-06-24

修改稿日期:2019-07-24

网络出版日期:2019-11-01

作者单位    点击查看

谭伯仲:中国工程物理研究院流体物理研究所, 四川 绵阳 621900
阳庆国:中国工程物理研究院流体物理研究所, 四川 绵阳 621900
杜亮亮:中国工程物理研究院流体物理研究所, 四川 绵阳 621900
安然:中国工程物理研究院流体物理研究所, 四川 绵阳 621900
刘冬兵:中国工程物理研究院流体物理研究所, 四川 绵阳 621900
孟立民:中国工程物理研究院流体物理研究所, 四川 绵阳 621900

联系人作者:阳庆国(yungore@163.com)

备注:国家自然科学基金;

【1】Beckhoff B, Kanngie?er H B, Langhoff N, et al. Handbook of practical X-ray fluorescence analysis [M]. Berlin, Heidelberg: Springer. 2006.

【2】Cheng L, Li M T, Wang J L, et al. Micro-X-ray fluorescence analysis of colored pigments containing Au on the ancient bowl of Qing dynasty [J]. Laser & Optoelectronics Progress. 2015, 52(4): 043401.
程琳, 李梅田, 王君玲, 等. 微束X射线荧光分析清代金釉碗彩料的化学成分和元素分布 [J]. 激光与光电子学进展. 2015, 52(4): 043401.

【3】Sun T X, Liu H H, Liu Z G, et al. Application of confocal micro X-ray fluorescence technique based on polycapillary X-ray lens in analyzing medicine with capsule [J]. Acta Optica Sinica. 2014, 34(1): 0134001.
孙天希, 刘鹤贺, 刘志国, 等. 毛细管X光透镜共聚焦微束X射线荧光技术在胶囊类药品分析中的应用 [J]. 光学学报. 2014, 34(1): 0134001.

【4】Yan F, Zhang J C, Li A G, et al. Fast scanning X-ray microprobe fluorescence imaging based on synchrotron radiation [J]. Acta Physica Sinica. 2011, 60(9): 090702.
闫芬, 张继超, 李爱国, 等. 基于同步辐射的快速扫描X射线微束荧光成像方法 [J]. 物理学报. 2011, 60(9): 090702.

【5】Wegrzynek D, Markowicz A, Bamford S, et al. Micro-beam X-ray fluorescence and absorption imaging techniques at the IAEA Laboratories [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms. 2005, 231: 176-182.

【6】Nakano K, Matsuda A, Nodera Y, et al. Improvement of spatial resolution of μ-XRF by using a thin metal filter [J]. X-Ray Spectrometry. 2008, 37(6): 642-645.

【7】Hertz H M, Larsson J C, Lundstr?m U, et al. Laboratory X-ray fluorescence tomography for high-resolution nanoparticle bio-imaging [J]. Optics Letters. 2014, 39(9): 2790-2793.

【8】Hoshino M, Ishino T, Namiki T, et al. Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field X-ray fluorescence imaging microscope [J]. Review of Scientific Instruments. 2007, 78(7): 073706.

【9】Takeuchi A, Terada Y, Uesugi K, et al. Three-dimensional X-ray fluorescence imaging with confocal full-field X-ray microscope [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2010, 616(2/3): 261-265.

【10】Schollmeier M S, Geissel M, Shores J E, et al. Performance of bent-crystal X-ray microscopes for high energy density physics research [J]. Applied Optics. 2015, 54(16): 5147-5161.

【11】Yang Q G, Liu D B, Mu J, et al. X-ray backlighting of imploding aluminium liners on PTS facility [J]. Review of Scientific Instruments. 2016, 87(9): 093706.

【12】Schollmeier M S, Knapp P F, Ampleford D J, et al. A 7.2 keV spherical X-ray crystal backlighter for two-frame, two-color backlighting at Sandia’s Z Pulsed Power Facility [J]. Review of Scientific Instruments. 2017, 88(10): 103503.

【13】Howells M R. Mirrors for synchrotron-radiation beamlines [M]. ∥Schlachter A S, Wuilleumier F J. New directions in research with third-generation soft X-ray synchrotron radiation sources. NATO ASI Series (Series E: Applied Sciences). Dordrecht: Springer. 1994, 254: 359-385.

【14】Dejus R J, del Rio M S. XOP: a graphical user interface for spectral calculations and X-ray optics utilities [J]. Review of Scientific Instruments. 1996, 67(9): 3356.

【15】Rio M S D, Dejus R J. XOP: recent developments [J]. Proceedings of SPIE. 1998, 3448: 340-345.

【16】Ji S C, Li L, Motra H B, et al. Poisson''''s ratio and auxetic properties of natural rocks [J]. Journal of Geophysical Research: Solid Earth. 2018, 123(2): 1161-1185.

引用该论文

Tan Bozhong,Yang Qingguo,Du Liangliang,An Ran,Liu Dongbing,Meng Limin. Spherical Crystal Based on X-Ray Fluorescence Imaging with High Spectral Resolution and Full Field of View[J]. Acta Optica Sinica, 2019, 39(11): 1134001

谭伯仲,阳庆国,杜亮亮,安然,刘冬兵,孟立民. 基于球面晶体的高光谱分辨全视场X射线荧光成像[J]. 光学学报, 2019, 39(11): 1134001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF