首页 > 论文 > 中国激光 > 46卷 > 6期(pp:614036--1)

超分辨太赫兹波频谱仪系统

Super-Resolution Terahertz Wave Spectrometer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于光学干涉理论,提出了一种超分辨太赫兹波频谱仪系统。干涉系统采用的是自主研制的宽带氮化镓阵列探测器,用于信号的多点同时探测。所提出的太赫兹波频谱仪具有较高的精度,可实现超分辨。利用阵列探测器得到的二维强度分布,可以测定待测光源的光束质量。利用倍频链发射源产生的470~720 GHz连续太赫兹波对频谱仪进行验证。在75 mm探测距离下,频谱仪的频谱分辨率为100 MHz,测量精度为0.1%,该精度是相同探测距离下分辨极限及精度的20倍。

Abstract

Herein, a super-resolution terahertz wave spectrometer system is proposed based on optical interference theory. The interference system can be used for the multipoint simultaneous detection of signals based on a self-developed broadband GaN array detector. The proposed spectrometer has high precision and can achieve super-resolution. The beam quality of the source to be tested can be measured based on the two-dimensional intensity distribution obtained by the proposed array detector. Continuous terahertz waves, generated by a multiplier-chain emission source with a frequency range from 470 to 720 GHz, are used as the testing source to verify the proposed spectrometer. At a detection distance of 75 mm, the spectral resolution and the measurement accuracy are determined to be 100 MHz and 0.1%, respectively. These values are 20 times the resolution and accuracy limits under the same detection conditions.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0614036

所属栏目:太赫兹技术

基金项目:吉林化工学院项目;

收稿日期:2019-01-23

修改稿日期:2019-03-04

网络出版日期:2019-06-14

作者单位    点击查看

魏白光:吉林化工学院教务处, 吉林 吉林 132022
袁慧:北京理工大学光电学院北京市精密光电测试仪器及技术重点实验室, 北京 100081
赵跃进:北京理工大学光电学院北京市精密光电测试仪器及技术重点实验室, 北京 100081
张存林:首都师范大学物理系太赫兹光电子学教育部重点实验室, 北京 100048

联系人作者:袁慧(yuan@physik.uni-frankfurt.de)

备注:吉林化工学院项目;

【1】Peiponen K E, Zeitler A and Kuwata-Gonokami M. Terahertz spectroscopy and imaging. Berlin, Heidelberg: Springer. 29-40(2013).

【2】Lu T L, Yuan H, Wu T et al. Continuous terahertz spectrum measurement based on interferometry. Laser & Optoelectronics Progress. 53(4), (2016).
卢铁林, 袁慧, 吴同 等. 干涉法测量连续太赫兹波频谱. 激光与光电子学进展. 53(4), (2016).

【3】Yang Y P and Zhang Z W. Terahertz imaging technology. 2-4(2008).
杨玉平, 张振伟. 太赫兹成像技术. 2-4(2008).

【4】Fattinger C and Grischkowsky D. Terahertz beams. Applied Physics Letters. 54(6), 490-492(1989).

【5】Capasso F, Paiella R, Martini R et al. Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission. IEEE Journal of Quantum Electronics. 38(6), 511-532(2002).

【6】Yokoyama S, Nakamura R, Nose M et al. Terahertz spectrum analyzer based on a terahertz frequency comb. Optics Express. 16(17), 13052-13061(2008).

【7】Yasui T, Hayashi K, Ichikawa R et al. Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings. Optics Express. 23(9), 11367-11377(2015).

【8】Lin Q G, Pan X J, Zheng S Q et al. Crossed and balanced single-shot electro-optic measurement for terahertz pulses. Chinese Journal of Lasers. 44(1), (2017).
林庆钢, 潘新建, 郑水钦 等. 太赫兹脉冲的正交平衡单次电光测量. 中国激光. 44(1), (2017).

【9】Gaal P, Raschke M B, Reimann K et al. Measuring optical frequencies in the 0-40 THz range with non-synchronized electro-optic sampling. Nature Photonics. 1(10), 577-580(2007).

【10】Yasui T, Kabetani Y, Saneyoshi E et al. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Applied Physics Letters. 88(24), (2006).

【11】Cao J C. Terahertz semiconductor detectors. Physics. 35(11), 953-956(2006).
曹俊诚. 太赫兹半导体探测器研究进展. 物理. 35(11), 953-956(2006).

【12】Guo X G, Gu L L, Fu Z L et al. Research on terahertz quantum-well photodetectors. Laser & Optoelectronics Progress. 52(9), (2015).
郭旭光, 顾亮亮, 符张龙 等. 太赫兹量子阱探测器研究. 激光与光电子学进展. 52(9), (2015).

【13】Kokkonen K and Kaivola M. Scanning heterodyne laser interferometer for phase-sensitive absolute-amplitude measurements of surface vibrations. Applied Physics Letters. 92(6), (2008).

【14】Deninger A J, G?bel T, Sch?nherr D et al. Precisely tunable continuous-wave terahertz source with interferometric frequency control. Review of Scientific Instruments. 79(4), (2008).

【15】Johnson J L, Dorney T D and Mittleman D M. Enhanced depth resolution in terahertz imaging using phase-shift interferometry. Applied Physics Letters. 78(6), 835-837(2001).

【16】Naftaly M, Dean P, Miles R E et al. A simple interferometer for the analysis of terahertz sources and detectors. IEEE Journal of Selected Topics in Quantum Electronics. 14(2), 443-448(2008).

【17】Zhang L L, Mu K J, Zhou Y S et al. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures. Scientific Reports. 5, (2015).

【18】Zhao J, Zhang L L, Luo Y M et al. Power dependence of terahertz carrier frequency in a plasma-based two-color generation process. Chinese Physics B. 23(12), (2014).

【19】Xie J H, Zhao D Z and Yan J X. Physical optics course. 125-127(2005).
谢敬辉, 赵达尊, 阎吉祥. 物理光学教程. 125-127(2005).

【20】Kujawinska M and Robinson D W. Multichannel phase-stepped holographic interferometry. Applied Optics. 27(2), 312-320(1988).

引用该论文

Baiguang Wei, Hui Yuan, Yuejin Zhao, Cunlin Zhang. Super-Resolution Terahertz Wave Spectrometer[J]. Chinese Journal of Lasers, 2019, 46(6): 0614036

魏白光, 袁慧, 赵跃进, 张存林. 超分辨太赫兹波频谱仪系统[J]. 中国激光, 2019, 46(6): 0614036

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF