首页 > 论文 > 中国激光 > 47卷 > 5期(pp:500005--1)

空气激光:强场新效应和远程探测新技术 (特邀综述) (内封面文章)

Air Lasing: Novel Effects in Strong Laser Fields and New Technology in Remote Sensing (Invited) (Inner Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

空气激光是以空气为增益介质产生的相干辐射,具有高准直度、高相干性、高强度以及自由空间传输等优点,为远程探测提供了全新的技术途径。同时,空气激光是强场超快激光与空气中的原子分子相互作用的结果,蕴含了新颖而丰富的强场物理效应。综述了空气激光近年来的主要研究进展。首先介绍了三类空气激光的产生途径及基本特征,然后从氮气离子激光的增益机制以及量子相干性两个层面阐述了空气激光所蕴含的新物理效应,并讨论了空气激光在远程探测中的应用,最后总结了空气激光研究的意义,展望了该方向面临的机遇与挑战。

Abstract

Air lasing refers to the coherent emission produced with air as the gain medium. Air lasing has numerous advantages such as high directionality, high coherence, high intensity, and free-space propagation. Therefore, air lasing provides a novel pathway for remote sensing. Air lasing, which is generated by the interaction between a strong ultrafast laser and atoms or molecules in air, includes many new strong-field effects. In this paper, we reviewed the major advances in air lasing in recent years. First, generation methods and basic characteristics of three types of air lasing were introduced. Next, new physical effects involved in air lasing were revealed based on two aspects, gain mechanism of molecular nitrogen ion lasing and quantum coherence. Moreover, applications of air lasing in remote sensing were discussed. Conclusively, the research significance of air lasing was summarized, and the opportunities and challenges in this topic were highlighted.

广告组6 - 调制器
补充资料

中图分类号:O437

DOI:10.3788/CJL202047.0500005

所属栏目:“纪念激光器诞生60周年”专题

基金项目:国家自然科学基金、中国科学院战略性先导专项、中国科学院前沿科学重点研究项目、上海市科委重点项目、上海市青年科技启明星计划、中国科学院青年创新促进会项目;

收稿日期:2020-03-05

修改稿日期:2020-04-03

网络出版日期:2020-05-01

作者单位    点击查看

姚金平:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院超强激光科学卓越创新中心, 上海 201800
程亚:中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800中国科学院超强激光科学卓越创新中心, 上海 201800华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062

联系人作者:姚金平(jinpingyao@siom.ac.cn); 程亚(ya.cheng@siom.ac.cn);

备注:国家自然科学基金、中国科学院战略性先导专项、中国科学院前沿科学重点研究项目、上海市科委重点项目、上海市青年科技启明星计划、中国科学院青年创新促进会项目;

【1】Maiman T H. Stimulated optical radiation in ruby [J]. Nature. 1960, 187(4736): 493-494.

【2】Cohen-Tannoudji C N. Nobel lecture: manipulating atoms with photons [J]. Reviews of Modern Physics. 1998, 70(3): 707-719.

【3】Ashkin A, Dziedzic J. Optical trapping and manipulation of viruses and bacteria [J]. Science. 1987, 235(4795): 1517-1520.

【4】Cao X, Jahazi M, Immarigeon J P, et al. A review of laser welding techniques for magnesium alloys [J]. Journal of Materials Processing Technology. 2006, 171(2): 188-204.

【5】Mourou G A, Tajima T, Bulanov S V. Optics in the relativistic regime [J]. Reviews of Modern Physics. 2006, 78(2): 309-371.

【6】Mourou G, Tajima T. The extreme light infrastructure: optics’ next horizon [J]. Optics and Photonics News. 2011, 22(7): 47-51.

【7】Agostini P, Fabre F, Mainfray G, et al. Free-free transitions following six-photon ionization of xenon atoms [J]. Physical Review Letters. 1979, 42(17): 1127-1130.

【8】Fittinghoff D N, Bolton P R, Chang B, et al. Observation of nonsequential double ionization of helium with optical tunneling [J]. Physical Review Letters. 1992, 69(18): 2642-2645.

【9】L''''Huillier A. Balcou P. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser [J]. Physical Review Letters. 1993, 70(6): 774-777.

【10】Krause J L, Schafer K J, Kulander K C. High-order harmonic generation from atoms and ions in the high intensity regime [J]. Physical Review Letters. 1992, 68(24): 3535-3538.

【11】Krausz F, Ivanov M. Attosecond physics [J]. Reviews of Modern Physics. 2009, 81(1): 163-234.

【12】Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators [J]. Reviews of Modern Physics. 2009, 81(3): 1229-1285.

【13】Henig A, Kiefer D, Markey K, et al. Enhanced laser-driven ion acceleration in the relativistic transparency regime [J]. Physical Review Letters. 2009, 103(4): 045002.

【14】Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing [J]. Light: Science & Applications. 2014, 3(4): e149.

【15】Wang C, Fomovsky M, Miao G X, et al. Femtosecond laser crosslinking of the cornea for non-invasive vision correction [J]. Nature Photonics. 2018, 12(7): 416-422.

【16】Kasparian J. White-light filaments for atmospheric analysis [J]. Science. 2003, 301(5629): 61-64.

【17】Xu H L, Cheng Y, Chin S L, et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing [J]. Laser & Photonics Reviews. 2015, 9(3): 275-293.

【18】Vaulin V A, Slinko V N, Sulakshin S S. Air ultraviolet laser excited by high-power microwave pulses [J]. Soviet Journal of Quantum Electronics. 1988, 18(11): 1457-1458.

【19】Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. Optics Communications. 1985, 56(3): 219-221.

【20】Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air [J]. Optics Letters. 1995, 20(1): 73-75.

【21】Luo Q, Liu W W, Chin S L. Lasing action in air induced by ultra-fast laser filamentation [J]. Applied Physics B: Lasers and Optics. 2003, 76(3): 337-340.

【22】Dogariu A, Michael J B, Scully M O, et al. High-gain backward lasing in air [J]. Science. 2011, 331(6016): 442-445.

【23】Yao J P, Zeng B, Xu H L, et al. High-brightness switchable multiwavelength remote laser in air [J]. Physical Review A. 2011, 84(5): 051802.

【24】Polynkin P, Cheng Y. Air lasing[M]. Cham: , 2018.

【25】Yuan L Q, Liu Y, Yao J P, et al. Recent advances in air lasing: a perspective from quantum coherence [J]. Advanced Quantum Technologies. 2019, 2(11): 1900080.

【26】Li H L, Yao D W, Wang S Q, et al. Air lasing: phenomena and mechanisms [J]. Chinese Physics B. 2019, 28(11): 114204.

【27】Dogariu A, Miles R B. Nitrogen lasing in air . [C]// Conference on Lasers and Electro-Optics. San Jose, California, United States: Optical Society of America. 2013, QW1E: 1.

【28】Laurain A, Scheller M, Polynkin P. Low-threshold bidirectional air lasing [J]. Pysical Review Letters. 2014, 113(25): 253901.

【29】Kartashov D, Ali?auskas S, Andriukaitis G, et al. Free-space nitrogen gas laser driven by a femtosecond filament [J]. Physical Review A. 2012, 86(3): 033831.

【30】Mitryukovskiy S, Liu Y, Ding P J, et al. Backward stimulated radiation from filaments in nitrogen gas and air pumped by circularly polarized 800 nm femtosecond laser pulses [J]. Optics Express. 2014, 22(11): 12750-12759.

【31】Kartashov D, Ali?auskas S, Baltu?ka A, et al. Remotely pumped stimulated emission at 337 nm in atmospheric nitrogen [J]. Physical Review A. 2013, 88(4): 041805.

【32】Yao J P, Li G H, Jing C R, et al. Remote creation of coherent emissions in air with two-color ultrafast laser pulses [J]. New Journal of Physics. 2013, 15(2): 023046.

【33】Dogariu A, Miles R B. Three-photon femtosecond pumped backwards lasing in argon [J]. Optics Express. 2016, 24(6): A544-A552.

【34】Chu W, Zeng B, Yao J P, et al. Multiwavelength amplified harmonic emissions from carbon dioxide pumped by mid-infrared femtosecond laser pulses [J]. Europhysics Letters. 2012, 97(6): 64004.

【35】Yuan S, Wang T J, Teranishi Y, et al. Lasing action in water vapor induced by ultrashort laser filamentation [J]. Applied Physics Letters. 2013, 102(22): 224102.

【36】Dogariu A, Chng T L, Miles R B. Remote backward-propagating water lasing in atmospheric air . [C]//Conference on Lasers and Electro-Optics. San Jose, California. Washington, D.C.: OSA. 2016, AW4K: 5.

【37】Hemmer P R, Miles R B, Polynkin P, et al. Standoff spectroscopy via remote generation of a backward-propagating laser beam [J]. Proceedings of the National Academy of Sciences of the United States of America. 2011, 108(8): 3130-3134.

【38】Malevich P N, Kartashov D, Pu Z, et al. Ultrafast-laser-induced backward stimulated Raman scattering for tracing atmospheric gases [J]. Optics Express. 2012, 20(17): 18784-18794.

【39】Malevich P N, Maurer R, Kartashov D, et al. Stimulated Raman gas sensing by backward UV lasing from a femtosecond filament [J]. Optics Letters. 2015, 40(11): 2469-2472.

【40】Dogariu A. Remote trace detection of hazardous substances using nonlinear optics . [C]//Light, Energy and the Environment. Canberra. Washington, D.C.: OSA. 2014, EF4A: 4.

【41】Ni J L, Chu W, Zhang H S, et al. Impulsive rotational Raman scattering of N2 by a remote “air laser” in femtosecond laser filament [J]. Optics Letters. 2014, 39(8): 2250-2253.

【42】Liu Z X, Yao J P, Zhang H S, et al. Extreme nonlinear Raman interaction of an ultrashort nitrogen ion laser with an impulsively excited molecular wavepacket [J]. Physical Review A. 2020, 101(4): 043404.

【43】Yao J P, Chu W, Liu Z X, et al. An anatomy of strong-field ionization-induced air lasing [J]. Applied Physics B. 2018, 124(5): 73.

【44】Traverso A J, Sanchez-Gonzalez R, Yuan L Q, et al. Coherence brightened laser source for atmospheric remote sensing [J]. Proceedings of the National Academy of Sciences of the United States of America. 2012, 109(38): 15185-15190.

【45】Mitryukovskiy S, Liu Y, Ding P J, et al. Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses [J]. Physical Review Letters. 2015, 114(6): 063003.

【46】Zhang H S, Jing C R, Yao J P, et al. Rotational coherence encoded in an “air-laser” spectrum of nitrogen molecular ions in an intense laser field [J]. Physical Review X. 2013, 3(4): 041009.

【47】Liu Y, Ding P J, Lambert G, et al. Recollision-induced superradiance of ionized nitrogen molecules [J]. Physical Review Letters. 2015, 115(13): 133203.

【48】Liu Y, Ding P J, Ibrakovic N, et al. Unexpected sensitivity of nitrogen ions superradiant emission on pump laser wavelength and duration [J]. Physical Review Letters. 2017, 119(20): 203205.

【49】Britton M, Laferrière P, Ko D H, et al. Testing the role of recollision in N2+ air lasing [J]. Physical Review Letters. 2018, 120(13): 133208.

【50】Xu H L, L?tstedt E, Iwasaki A, et al. Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling [J]. Nature Communications. 2015, 6: 8347.

【51】Yao J P, Jiang S C, Chu W, et al. Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields [J]. Physical Review Letters. 2016, 116(14): 143007.

【52】Zhang Q, Xie H Q, Li G H, et al. Sub-cycle coherent control of ionic dynamics via transient ionization injection [J]. Communications Physics. 2020, 3: 50.

【53】Chen J M, Yao J P, Zhang H S, et al. Electronic-coherence-mediated molecular nitrogen-ion lasing in a strong laser field [J]. Physical Review A. 2019, 100(3): 031402.

【54】Zhang A, Liang Q Q, Lei M W, et al. Coherent modulation of superradiance from nitrogen ions pumped with femtosecond pulses [J]. Optics Express. 2019, 27(9): 12638-12646.

【55】Mysyrowicz A, Danylo R, Houard A, et al. Lasing without population inversion in N2+ [J]. APL Photonics. 2019, 4(11): 110807.

【56】Yao J P, Chu W, Liu Z X, et al. Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields [J]. New Journal of Physics. 2018, 20(3): 033035.

【57】Liu Z X, Yao J P, Chen J M, et al. Near-resonant Raman amplification in the rotational quantum wave packets of nitrogen molecular ions generated by strong field ionization [J]. Physical Review Letters. 2018, 120(8): 083205.

【58】Yuan L Q, Hokr B H, Traverso A J, et al. Theoretical analysis of the coherence-brightened laser in air [J]. Physical Review A. 2013, 87(2): 023826.

【59】Talebpour A, Abdel-Fattah M, Bandrauk A D, et al. Spectroscopy of the gases interacting with intense femtosecond laser pulses [J]. Laser Physics. 2001, 11(1): 68-76.

【60】Kartashov D, Ali?auskas S, Pug?lys A, et al. Theory of a filament initiated nitrogen laser [J]. Journal of Physics B: Atomic, Molecular and Optical Physics. 2015, 48(9): 094016.

【61】Sprangle P, Pe?ano J, Hafizi B, et al. Remotely induced atmospheric lasing [J]. Applied Physics Letters. 2011, 98(21): 211102.

【62】Shneider M N, Baltu?ka A, Zheltikov A M. Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization [J]. Journal of Applied Physics. 2011, 110(8): 083112.

【63】Xie H Q, Li G H, Chu W, et al. Backward nitrogen lasing actions induced by femtosecond laser filamentation: influence of duration of gain [J]. New Journal of Physics. 2015, 17(7): 073009.

【64】Itikawa Y. Cross sections for electron collisions with nitrogen molecules [J]. Journal of Physical and Chemical Reference Data. 2006, 35(1): 31-53.

【65】Heard H G. Ultra-violet gas laser at room temperature [J]. Nature. 1963, 200(4907): 667.

【66】Yao J P, Xie H Q, Zeng B, et al. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses [J]. Optics Express. 2014, 22(16): 19005-19013.

【67】Ding P J, Mitryukovskiy S, Houard A, et al. Backward lasing of air plasma pumped by circularly polarized femtosecond pulses for the saKe of remote sensing (BLACK) [J]. Optics Express. 2014, 22(24): 29964-29977.

【68】Ding P J, Oliva E, Houard A, et al. Lasing dynamics of neutral nitrogen molecules in femtosecond filaments [J]. Physical Review A. 2016, 94(4): 043824.

【69】Ding P J, Escudero J C, Houard A, et al. Nonadiabaticity of cavity-free neutral nitrogen lasing [J]. Physical Review A. 2017, 96(3): 033810.

【70】Ni J L, Chu W, Jing C R, et al. Identification of the physical mechanism of generation of coherent N2+ emissions in air by femtosecond laser excitation [J]. Optics Express. 2013, 21(7): 8746-8752.

【71】Li G H, Jing C R, Zeng B, et al. Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization [J]. Physical Review A. 2014, 89(3): 033833.

【72】Zhong X Q, Miao Z M, Zhang L L, et al. Vibrational and electronic excitation of ionized nitrogen molecules in intense laser fields [J]. Physical Review A. 2017, 96(4): 043422.

【73】Lei M W, Wu C Y, Zhang A, et al. Population inversion in the rotational levels of the superradiant N2+ pumped by femtosecond laser pulses [J]. Optics Express. 2017, 25(4): 4535-4541.

【74】Miao Z M, Zhong X Q, Zhang L L, et al. Stimulated-Raman-scattering-assisted superfluorescence enhancement from ionized nitrogen molecules in 800-nm femtosecond laser fields [J]. Physical Review A. 2018, 98(3): 033402.

【75】Xu B, Jiang S C, Yao J P, et al. Free-space Ν2+ lasers generated in strong laser fields: the role of molecular vibration [J]. Optics Express. 2018, 26(10): 13331-13339.

【76】Arissian L, Kamer B, Rastegari A, et al. Transient gain from N2+ in light filaments [J]. Physical Review A. 2018, 98(5): 053438.

【77】Britton M, Lytova M, Laferrière P, et al. Short- and long-term gain dynamics in N2+ air lasing [J]. Physical Review A. 2019, 100: 013406.

【78】Zheng W, Miao Z M, Zhang L L, et al. Enhanced coherent emission from ionized nitrogen molecules by femtosecond laser pulses [J]. The Journal of Physical Chemistry Letters. 2019, 10(21): 6598-6603.

【79】Xie H Q, Zeng B, Li G H, et al. Coupling of N2+rotational states in an air laser from tunnel-ionized nitrogen molecules [J]. Physical Review A. 2014, 90(4): 042504.

【80】Zeng B, Chu W, Li G H, et al. Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy [J]. Physical Review A. 2014, 89(4): 042508.

【81】Liu Y, Brelet Y, Point G, et al. Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses [J]. Optics Express. 2013, 21(19): 22791-22798.

【82】Wang T J, Ju J J, Daigle J F, et al. Self-seeded forward lasing action from a femtosecond Ti∶sapphire laser filament in air [J]. Laser Physics Letters. 2013, 10(12): 125401.

【83】Chu W, Li G H, Xie H Q, et al. A self-induced white light seeding laser in a femtosecond laser filament [J]. Laser Physics Letters. 2014, 11(1): 015301.

【84】Li H L, Hou M Y, Zang H W, et al. Significant enhancement of N2+ lasing by polarization-modulated ultrashort laser pulses [J]. Physical Review Letters. 2019, 122: 013202.

【85】Xie H Q, Zhang Q, Li G H, et al. Vibrational population transfer between electronic states of N2+ in polarization-modulated intense laser fields [J]. Physical Review A. 2019, 100(5): 053419.

【86】Ando T, L?tstedt E, Iwasaki A, et al. Rotational, vibrational, and electronic modulations in N2+ lasing at 391 nm: evidence of coherent B2Σu+-X2Σg+-A2Πu coupling [J]. Physical Review Letters. 2019, 123(20): 203201.

【87】Li H X, Song Q Y, Yao J P, et al. Air lasing from singly ionized N2 driven by bicircular two-color fields [J]. Physical Review A. 2019, 99(5): 053413.

【88】Clerici M, Bruhács A, Faccio D, et al. Terahertz control of air lasing [J]. Physical Review A. 2019, 99(5): 053802.

【89】Kartashov D, M?hring J, Andriukaitis G, et al. Stimulated amplification of UV emission in a femtosecond filament using adaptive control . [C]//Conference on Lasers and Electro-Optics 2012, San Jose, California. Washington, D.C.: OSA. 2012, QTh4E: 6.

【90】Point G, Liu Y, Brelet Y, et al. Lasing of ambient air with microjoule pulse energy pumped by a multi-terawatt infrared femtosecond laser [J]. Optics Letters. 2014, 39(7): 1725-1728.

【91】Jing C R, Zhang H S, Chu W, et al. Generation of an air laser at extended distances by femtosecond laser filamentation with telescope optics [J]. Optics Express. 2014, 22(3): 3151-3156.

【92】Jing C R, Yao J P, Li Z T, et al. Free-space air molecular lasing from highly excited vibrational states pumped by circularly-polarized femtosecond laser pulses [J]. Journal of Physics B: Atomic, Molecular and Optical Physics. 2015, 48(9): 094001.

【93】Zhai K X, Li Z T, Xie H Q, et al. Ultrafast gain dynamics in N2+ lasing from highly excited vibrational states pumped by circularly polarized femtosecond laser pulses [J]. Chinese Optics Letters. 2015, 13(5): 050201.

【94】Andriukaitis G, M?hring J, Kartashov D, et al. Intense, directional UV emission from molecular nitrogen ions in an adaptively controlled femtosecond filament [J]. EPJ Web of Conferences. 2013, 41: 10004.

【95】Kartashov D, Haessler S, Alisauskas S, et al. Transient inversion in rotationally aligned nitrogen ions in a femtosecond filament . [C]//Research in Optical Sciences, Messe Berlin, Berlin. Washington, D.C.: OSA. 2014, HTh4B: 5.

【96】Azarm A, Corkum P, Polynkin P. Optical gain in rotationally excited nitrogen molecular ions [J]. Physical Review A. 2017, 96(5): 051401.

【97】Xu H L, L?tstedt E, Ando T, et al. Alignment-dependent population inversion in N2+ in intense few-cycle laser fields [J]. Physical Review A. 2017, 96(4): 041401.

【98】Wan Y X, Xu B, Yao J P, et al. Polarization ellipticity dependence of N2+ air lasing: the role of coupling between the ground state and a photo-excited intermediate state [J]. Journal of the Optical Society of America B. 2019, 36(10): G57-G61.

【99】Fu Y, L?tstedt E, Li H L, et al. Optimization of N2+ lasing through population depletion in the X2Σg+ state using elliptically modulated ultrashort intense laser fields [J]. Physical Review Research. 2020, 2: 012007.

【100】Zhang A, Lei M W, Gao J S, et al. Subfemtosecond-resolved modulation of superfluorescence from ionized nitrogen molecules by 800-nm femtosecond laser pulses [J]. Optics Express. 2019, 27(10): 14922-14930.

【101】Xu B, Yao J P, Wan Y X, et al. Vibrational Raman scattering from coherently excited molecular ions in a strong laser field [J]. Optics Express. 2019, 27(13): 18262-18272.

【102】Arissian L, Kamer B, Rasoulof A. Effect of rotational wave packets on the stimulated emission of nitrogen with light filament [J]. Optics Communications. 2016, 369: 215-219.

【103】Chin S L, Xu H L, Cheng Y, et al. Natural population inversion in a gaseous molecular filament [J]. Chinese Optics Letters. 2013, 11(1): 013201.

【104】Zhang H S, Jing C R, Li G H, et al. Abnormal dependence of strong-field-ionization-induced nitrogen lasing on polarization ellipticity of the driving field [J]. Physical Review A. 2013, 88(6): 063417.

【105】Zhong X Q, Miao Z M, Zhang L L, et al. Optimizing the 391-nm lasing intensity from ionized nitrogen molecules in 800-nm femtosecond laser fields [J]. Physical Review A. 2018, 97(3): 033409.

【106】Wang T J, Daigle J F, Ju J J, et al. Forward lasing action at multiple wavelengths seeded by white light from a femtosecond laser filament in air [J]. Physical Review A. 2013, 88(5): 053429.

【107】Wang P, Wu C Y, Lei M W, et al. Population dynamics of molecular nitrogen initiated by intense femtosecond laser pulses [J]. Physical Review A. 2015, 92(6): 063412.

【108】Ni J L, Chu W, Zhang H S, et al. Harmonic-seeded remote laser emissions in N2-Ar, N2-Xe and N2-Ne mixtures: a comparative study [J]. Optics Express. 2012, 20(19): 20970-20979.

【109】Li Z T, Zeng B, Chu W, et al. Generation of elliptically polarized nitrogen ion laser fields using two-color femtosecond laser pulses [J]. Scientific Reports. 2016, 6: 21504.

【110】Li H L, Zang H W, Su Y, et al. Generation of air lasing at extended distances by coaxial dual-color femtosecond laser pulses [J]. Journal of Optics. 2017, 19(12): 124006.

【111】Jing C R, Xie H Q, Li G H, et al. Dynamic wavelength switching of a remote nitrogen or air laser with chirped femtosecond laser pulses [J]. Laser Physics Letters. 2015, 12(1): 015301.

【112】Tong X M, Zhao Z X, Lin C D. Theory of molecular tunneling ionization [J]. Physical Review A. 2002, 66(3): 033402.

【113】Campbell J B, Wynne R H. Introduction to remote sensing[M]. New York: , 2011.

【114】Chu W, Li H L, Ni J L, et al. Lasing action induced by femtosecond laser filamentation in ethanol flame for combustion diagnosis [J]. Applied Physics Letters. 2014, 104(9): 091106.

【115】Ding P J, Ruchkina M, Liu Y, et al. Femtosecond two-photon-excited backward lasing of atomic hydrogen in a flame [J]. Optics Letters. 2018, 43(5): 1183-1186.

【116】Ding P J, Ruchkina M. Cont-Bernard D D, et al. Detection of atomic oxygen in a plasma-assisted flame via a backward lasing technique [J]. Optics Letters. 2019, 44(22): 5477-5480.

【117】Ruchkina M, Ding P J, Ehn A, et al. Single-shot, spatially-resolved stand-off detection of atomic hydrogen via backward lasing in flames [J]. Proceedings of the Combustion Institute. 2019, 37(2): 1281-1288.

引用该论文

Yao Jinping,Cheng Ya. Air Lasing: Novel Effects in Strong Laser Fields and New Technology in Remote Sensing[J]. Chinese Journal of Lasers, 2020, 47(5): 0500005

姚金平,程亚. 空气激光:强场新效应和远程探测新技术[J]. 中国激光, 2020, 47(5): 0500005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF