首页 > 论文 > 中国激光 > 47卷 > 5期(pp:500001--1)

半导体激光器研究进展 (特邀综述)

Development of Semiconductor Lasers (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

半导体激光器从诞生至今半个世纪,在理论、实践和应用方面取得了巨大进展,占据了整体激光领域的大部分市场,广泛应用于通信网络、工业加工、医疗美容、激光传感、航空国防、安全防护,以及消费电子等领域。本文在回顾国际国内早期半导体激光器发展历程的基础上,重点针对高功率泵浦源领域的GaAs基8xx nm和9xx nm半导体激光器,三维感知领域的905 nm隧道结激光器和940 nm垂直腔面发射激光器,以及光谱分析和红外感测领域的GaSb基红外激光器和InP基量子级联激光器进行了简单总结。内容包括半导体激光器的主要应用场景、所追求的主要目标、近10年国内外发展的最新进展,以及今后可能的发展趋势与方向。

Abstract

Semiconductor laser has been half a century since its birth, tremendous progress has been made in theory, practice, and applications, and the market occupies more than half of the entire laser field. It is widely used in communication networks, industrial processing, medical and beauty, laser sensing, aviation and defense, security protection, and even consumer electronics. On the basis of reviewing the development history of early domestic and international semiconductor lasers, this article mainly focuses on GaAs-based 8xx nm and 9xx nm semiconductor lasers in the field of high-power pump sources, 905 nm tunnel junction lasers and 940 nm vertical cavity surface emitting lasers in the field of three-dimensional sensing, and GaSb-based infrared lasers and InP-based quantum cascade lasers in the field of spectral analysis and infrared sensing, for a brief review. The content includes the main application scenarios, the main goals pursued, the latest developments in the past 10 years at home and abroad, and the possible development trends and directions in the future.

广告组6 - 调制器
补充资料

中图分类号:TN248.4

DOI:10.3788/CJL202047.0500001

所属栏目:“纪念激光器诞生60周年”专题

收稿日期:2020-04-14

修改稿日期:2020-04-28

网络出版日期:2020-05-01

作者单位    点击查看

陈良惠:中国科学院半导体研究所纳米光电子实验室, 北京 100083
杨国文:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119度亘激光技术(苏州)有限公司, 江苏 苏州 215123
刘育衔:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119

联系人作者:陈良惠(chenlh@semi.ac.cn); 杨国文(yangguowen@opt.ac.cn);

【1】Epperlein P W. Semiconductor laser engineering, reliability and diagnostics [M]. Oxford, UK: John Wiley & Sons Ltd. 2013.

【2】Zhang J, Zhao H P, Tansu N. Large optical gain AlGaN-delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes [J]. Applied Physics Letters. 2011, 98(17): 171111.

【3】Murayama M, Nakayama Y, Yamazaki K, et al. Watt-class green (530 nm) and blue (465 nm) laser diodes [J]. Physica Status Solidi. 2018, 215(10): 1700513.

【4】Hall R N, Fenner G E, Kingsley J D, et al. Coherent light emission from GaAs junctions [J]. Physical Review Letters. 1962, 9(9): 366-368.

【5】Nathan M I, Dumke W P, Burns G, et al. Stimulated emission of radiation from GaAs p-n junctions [J]. Applied Physics Letters. 1962, 1(3): 62-64.

【6】Quist T M, Rediker R H, Keyes R J, et al. Semiconductor maser of GaAs [J]. Applied Physics Letters. 1962, 1(4): 91-92.

【7】Kroemer H. A proposed class of hetero-junction injectionlasers [J]. Proceedings of the IEEE. 1963, 51(12): 1782-1783.

【8】Panish M B, Hayashi I, Sumski S. Double-heterostructure injection lasers with room-temperature thresholds as low as 2300 A/cm 2 [J]. Applied Physics Letters. 1970, 16(8): 326-327.

【9】Soda H, Iga K I, Kitahara C, et al. GaInAsP/InP surface emitting injection lasers [J]. Japanese Journal of Applied Physics. 1979, 18(12): 2329-2330.

【10】Iga K, Koyama F, Kinoshita S. Surface emitting semiconductor lasers [J]. IEEE Journal of Quantum Electronics. 1988, 24(9): 1845-1855.

【11】Wang S. Proposal of periodic layered waveguide structures for distributedlasers [J]. Journal of Applied Physics. 1973, 44(2): 767-780.

【12】Wang Q M. The development and development of semiconductor opto-electronics in the Institute of Semiconductors . C]∥Anthology of the 40th Anniversary of the Institute of Semiconductors, Chinese Academy of Sciences. 2000, 109.
王启明. 半导体光电子学在半导体所的开拓和发展 . C]∥中国科学院半导体研究所建所四十周年纪念文集. 2000, 109.

【13】Peng H D, Ma C H, Wang X J, et al. 1.5 μm InGaAsP/InP P substrate buried crescent (PBC) lasers [J]. Chinese Journal of Semiconductors. 1989, 10(2): 143-145.
彭怀德, 马朝华, 汪孝杰, 等. 1.5 μm InGaAsP/InP P型衬底隐埋新月型(PBC)结构激光器 [J]. 半导体学报. 1989, 10(2): 143-145.

【14】Wang W, Zhang J Y, Wang X J, et al. Low threshold current 1.5 μm PBR-DFB lasers [J]. Chinese Journal of Semiconductors. 1992, 13(5): 279-286, 327.
王圩, 张静媛, 汪孝杰, 等. 低阈值1.5 μm平面掩埋脊型(PBR)分布反馈激光器 [J]. 半导体学报. 1992, 13(5): 279-286, 327.

【15】Xiao J W, Xu J Y, Yang G W, et al. Extremely low threshold current, buried-heterostructure strained InGaAs-GaAs multiquantum well lasers [J]. Electronics Letters. 1992, 28(2): 154-156.

【16】Chen L H. Quantum well lasers and their applications [J]. International Journal of High Speed Electronics & Systems. 1996, 7(3): 373-381.

【17】Chen L H. The development of quantum well optoelectronic devices and formation of Chinese optoelectronic industry [J]. Engineering Science. 1999, 1(3): 75-78.
陈良惠. 量子阱光电子器件的发展与中国光电子器件产业的形成 [J]. 中国工程科学. 1999, 1(3): 75-78.

【18】Zhang S M, Zhu J J, Li D R, et al. Characteristics of domain wavelength and light output-power of GaN-based LED [J]. Journal of Semiconductiors. 2005, 26(6): 158-160.
张书明, 朱建军, 李德尧, 等. 氮化镓基发光二极管的发光光谱和功率特性 [J]. 半导体学报. 2005, 26(6): 158-160.

【19】Chen L H, Ye X J, Zhong M. Gallium nitride based blue laser diodes [J]. Physics. 2003, 32(5): 302-308.
陈良惠, 叶晓军, 种明. GaN基蓝光半导体激光器的发展 [J]. 物理. 2003, 32(5): 302-308.

【20】Yang H, Chen L H, Zhang S M, et al. Material growth and device fabrication of GaN-based blue-violet laser diodes [J]. Journal of Semiconductors. 2005, 26(2): 414-417.
杨辉, 陈良惠, 张书明, 等. GaN基蓝紫光激光器的材料生长和器件研制 [J]. 半导体学报. 2005, 26(2): 414-417.

【21】Cao C S, Fan L, Ai I, et al. Recent development of high-power-efficiency 50 W CW TE/TM polarized 808 nm diode laser bar at lasertel [J]. Proceedings of SPIE. 2010, 7583: 75830L.

【22】Wang Z F, Li T, Yang G W, et al. High power, high efficiency continuous-wave 808 nm laser diode arrays [J]. Optics & Laser Technology. 2017, 97: 297-301.

【23】Wang Z F, Li T, Yang G W, et al. Development of 808 nm quasi-continuous wave laser diode bar with 600 W output power [J]. Chinese Journal of Lasers. 2017, 44(6): 0601004.
王贞福, 李特, 杨国文, 等. 808 nm准连续600 W高功率半导体激光芯片研制 [J]. 中国激光. 2017, 44(6): 0601004.

【24】Pietrzak A, Woelz M, Huelsewede R, et al. Heading to 1 kW levels with laser bars of high-efficiency and emission wavelength around 880 nm and 940 nm [J]. Proceedings of SPIE. 2015, 9348: 93480E.

【25】Kanskar M, Chen Z G, Dong W M, et al. High power and high efficiency 1.8-kW pulsed diode laser bar [J]. Journal of Photonics for Energy. 2017, 7(1): 016003.

【26】Li P X, Yin F J, Zhang C S, et al. 808 nm single emitter high power laser with 13.6 W [J]. Chinese Journal of Lasers. 2018, 45(1): 101013.
李沛旭, 殷方军, 张成山, 等. 808 nm连续输出13. 6 W单芯片大功率激光器 [J]. 中国激光. 2018, 45(1): 101013.

【27】Xu Y, Fang Q, Xie Z X, et al. Single fiber quasi-single mode 2 kW all-fiber laser oscillator based on single-end 915 nm semiconductor laser forward-pumping [J]. Chinese Journal of Lasers. 2018, 45(4): 0401003.
许阳, 房强, 谢兆鑫, 等. 基于915 nm半导体激光单端前向抽运的单纤准单模2 kW全光纤激光振荡器 [J]. 中国激光. 2018, 45(4): 0401003.

【28】Yang P Z, Deng P Z, Xu J, et al. Spectroscopy and laser performance of Yb 3+ doped YAG crystal [J]. Acta Optica Sinica. 1999, 19(1): 132-135.
杨培志, 邓佩珍, 徐军, 等. Yb∶YAG晶体的光谱和激光性能 [J]. 光学学报. 1999, 19(1): 132-135.

【29】Bao L, Kanskar M, Devito M, et al. High reliability demonstrated on high-power and high-brightness diode lasers [J]. Proceedings of SPIE. 2015, 9348: 93480C.

【30】Kaifuchi Y, Yamagata Y, Nogawa R, et al. Ultimate high power operation of 9xx-nm single emitter broad stripe laser diodes [J]. Proceedings of SPIE. 2017, 10086: 100860D.

【31】Qiu B C, Hu H, Wang W M, et al. Design and fabrication of 12 W high power and high reliability 915 nm semiconductor lasers [J]. Chinese Optics. 2018, 11(4): 590-603.
仇伯仓, 胡海, 汪卫敏, 等. 12 W高功率高可靠性915 nm半导体激光器设计与制作 [J]. 中国光学. 2018, 11(4): 590-603.

【32】Jiang K, Li P X, Shen Y, et al. 76% maximum wall plug efficiency of 940 nm laser diode with step graded index structure [J]. Chinese Journal of Lasers. 2014, 41(4): 0402003.
蒋锴, 李沛旭, 沈燕, 等. 76%光电转换效率梯度渐变折射率结构940 nm半导体激光器 [J]. 中国激光. 2014, 41(4): 0402003.

【33】Matthew P, Victor R, Matthew E, et al. High-power high-efficiency laser diodes at JDSU [J]. Proceedings of SPIE. 2007, 6456: 64560G.

【34】Frevert C, Bugge F, Crump P, et al. 940 nm QCW diode laser bars with 70% efficiency at 1 kW output power at 203 K: analysis of remaining limits and path to higher efficiency and power at 200 K and 300 K [J]. Proceedings of SPIE. 2016, 9733: 97330L.

【35】Zhao Y L, Wang Z F, Yang G W, et al. Research on 940 nm kilowatt high efficiency quasi-continuous diode laser bars [J]. Proceedings of SPIE. 2019, 11170: 1117040.

【36】Abdullah D, Matthew P, Richard D, et al. 29. 5 W continuous wave output from 100 μm wide laser diode [J]. Proceedings of SPIE. 2015, 9348: 93480G.

【37】Gapontsev V, Moshegov N, Berezin I, et al. Highly-efficient high-power pumps for fiber lasers [J]. Proceedings of SPIE. 2017, 10086: 1008604.

【38】Kaifuchi Y, Yoshida K, Yamagata Y, et al. Enhanced power conversion efficiency in 900 nm range single emitter broad stripe laser diodes maintaining high power operability [J]. Proceedings of SPIE. 2019, 10900: 109000F.

【39】Wang Z F, Yang G W. 808 nm / 976 nm high efficiency, high power semiconductor laser chip [J]. Chinese Journal of Lasers. 2016, 43(8): 0815001.
王贞福, 杨国文. 808 nm/976 nm高效率、高功率半导体激光芯片 [J]. 中国激光. 2016, 43(8): 0815001.

【40】Sebastian J, Hülsewede R, Pietrzak A, et al. Research on 9xx nm diode laser for direct and pumping applications [J]. Proceedings of SPIE. 2015, 9255: 92550Y.

【41】Kaul T, Erbert G, Crump P, et al. Suppressed power saturation due to optimized optical confinement in 9xx nm high-power diode lasers that use extreme double asymmetric vertical designs [J]. Semiconductor Science and Technology. 2018, 33(3): 035005.

【42】Lian P, Yin T, Gao G, et al. Novel coupled multi-active region high power semiconductor lasers cascaded via tunnel junction [J]. Acta Physica Sinica. 2000, 49(12): 2374-2377.
廉鹏, 殷涛, 高国, 等. 新型多有源区隧道再生光耦合大功率半导体激光器 [J]. 物理学报. 2000, 49(12): 2374-2377.

【43】Vinokurov D A, Konyaev V P, Ladugin M A, et al. A study of epitaxially stacked tunnel-junctionsemiconductor lasers grown by MOCVD [J]. Semiconductors. 2010, 44(2): 238-242.

【44】Li H, Qu Y, Zhang J J, et al. High power 905 nm InGaAs tunnel junction series stacked semiconductor lasers [J]. High Power Laser and Particle Beams. 2013, 25(10): 2517-2520.
李辉, 曲轶, 张剑家, 等. 高功率905 nm InGaAs隧道结串联叠层半导体激光器 [J]. 强激光与粒子束. 2013, 25(10): 2517-2520.

【45】Si D H, Li J J, Fu Y Y, et al. 905 nm uncoupled double active region semiconductor laser with tunnel junction [J]. Journal of Optoelectronics·Laser. 2016, 27(2): 139-144.
司东海, 李建军, 付莹莹, 等. 905 nm隧道带间级联非耦合双有源区半导体激光器 [J]. 光电子·激光. 2016, 27(2): 139-144.

【46】Knigge A, Christopher H, Liero A, et al. Wavelength stabilized high pulse power laser bars for line-flash automotive LIDAR [J]. Proceedings of SPIE. 2019, 11262: 112620F.

【47】Knigge A, Klehr A, Wenzel H, et al. Wavelength-stabilized high-pulse-power laser diodes for automotive LiDAR [J]. Physica Status Solidi. 2018, 215(8): 1700439.

【48】Excelitas Technologies. 905 nm pulsed laser semiconductor diodes datasheet [2020-04-12].https:∥www. excelitas. com/product-category/905nm-pulsed-semiconductor-laser-diodes.[2020-04-12]. 0.

【49】Chen J, Liao K, Xiong Y, et al. Fabricaiton of high-power single tunnel junction semiconductor lasers [J]. Semiconductor Optoelectronics. 2018, 39(3): 345-349.
陈健, 廖柯, 熊煜, 等. 大功率单隧道结半导体激光器的研制 [J]. 半导体光电. 2018, 39(3): 345-349.

【50】Qiu Y Z, Xie Y H, Wang W M, et al. Ultra-high-power and high-efficiency 905 nm pulsed laser for LiDAR . [C]∥2019 IEEE 4th Optoelectronics Global Conference (OGC), September 3-6, 2019. Shenzhen, China. IEEE. 2019, 32-35.

【51】Kuchta D M, Pepeljugoski P, Kwark Y. VCSEL modulation at 20 Gb/s over 200 m of multimode fiber using a 3. 3 V SiGe laser driver IC . [C]∥Leos Summer Topical Meeting. 2001, 941906.

【52】Johnson R H, Serkland D K. 17 G directly modulated datacom VCSELs . [C]∥2008 Conference on Lasers and Electro-Optics, May 4-9, 2008. San Jose, CA, USA. IEEE. 2008, CPDB2.

【53】Westbergh P, Gustavsson J S. Ko''''gel B, et al. 40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL [J]. Electronics Letters. 2010, 46(14): 1014-1016.

【54】Westbergh P, Safaisini R, Haglund E, et al. High-speed 850 nm VCSELs operating error free up to 57 Gbit/s [J]. Electronics Letters. 2013, 49(16): 1021-1023.

【55】Kuchta D M, Rylyakov A V, Schow C L, et al. 64 Gb/s transmission over 57 m MMF using an NRZ modulated 850 nm VCSEL . [C]∥Optical Fiber Communication Conference, San Francisco, California. Washington, D. C. : OSA. 2014.

【56】Kuchta D M, Rylyakov A V, Doany F E, et al. A 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link [J]. IEEE Photonics Technology Letters. 2015, 27(6): 577-580.

【57】Haglund E, Larsson A, Geen M, et al. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25-50 Gbit/S [J]. Electronics Letters. 2015, 51(14): 1096-1098.

【58】Barve A V. -08-22 [P]. Yuen A. Compact emitter design for a vertical-cavity surface-emitting laser: US009742153B1. 2017.

【59】Moench H, Gronenborn S, Gu X, et al. VCSELs in short-pulse operation for time-of-flight applications [J]. Proceedings of SPIE. 2018, 10552: 105520G.

【60】Okur S, Scheller M, Miglo A, et al. High-power VCSEL arrays with customized beam divergence for 3D sensing applications [J]. Proceedings of SPIE. 2019, 10938: 109380F.

【61】Yu H Y, Yao S, Zhang H M, et al. Design and fabrication of 940 nm vertical-cavity surface-emitting lasers [J]. Acta Physica Sinica. 2019, 68(6): 064207.
于洪岩, 尧舜, 张红梅, 等. 940 nm垂直腔面发射激光器的设计及制备 [J]. 物理学报. 2019, 68(6): 064207.

【62】Khan Z, Shih J C, Chao R L, et al. High-brightness and high-speed vertical-cavity surface-emitting laser arrays [J]. Optica. 2020, 7(4): 267-275.

【63】Jean-Francois S, Chuni L, Viktor K, et al. High-power vertical-cavity surface-emitting arrays [J]. Proceedings of SPIE. 2008, 6876: 68760D.

【64】Gao S J, Zhang X, Zhang J W, et al. Miniaturized VCSEL pulsed laser source with high peak power at 980 nm [J]. Journal of Infrared and Millimeter Waves. 2016, 35(5): 578-583.
高世杰, 张星, 张建伟, 等. 980 nm高峰值功率微型化VCSEL脉冲激光光源 [J]. 红外与毫米波学报. 2016, 35(5): 578-583.

【65】Zhou D L, Seurin J F, Xu G Y, et al. Progress on high-power high-brightness VCSELs and applications [J]. Proceedings of SPIE. 2015, 9381: 93810B.

【66】Aoki Y, Maeda J, Yoshida H, et al. 200 W operation of an ion-implanted vertical-cavity surface-emitting laser array [J]. IEEE Journal of Quantum Electronics. 2014, 50(7): 510-514.

【67】Zhou D L, Seurin J F, Xu G Y, et al. Progress on high-power 808 nm VCSELs and applications [J]. Proceedings of SPIE. 2017, 10122: 1012206.

【68】Warren M E, Podva D, Preethi D C, et al. Low-divergence high-power VCSEL arrays for lidar application [J]. Proceedings of SPIE. 2018, 10552: 105520E.

【69】Joullié A, Christol P. GaSb-based mid-infrared 2-5 μm laser diodes [J]. Comptes Rendus Physique. 2003, 4(6): 621-637.Joullié A, Christol P. GaSb-based mid-infrared 2-5 μm laser diodes [J]. Comptes Rendus Physique. 2003, 4(6): 621-637.

【70】Tournié E, Baranov A N. Mid-infrared semiconductor lasers [M]. ∥Advances in Semiconductor Lasers. France: Elsevier. 2012, 183-226.

【71】Chen J, Hosoda T, Tsvid G, et al. Type-I GaSb based diode lasers operating at room temperature in 2 to 3.5 μm spectral region [J]. Proceedings of SPIE. 2010, 7686: 76860S.

【72】Shterengas L, Kipshidze G, Hosoda T, et al. Cascade pumping of 1.9-3.3 μm type-I quantum well GaSb-based diode lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2017, 23(6): 1-8.

【73】Hosoda T, Feng T, Shterengas L, et al. High power cascade diode lasers emitting near 2 μm [J]. Applied Physics Letters. 2016, 108(13): 131109.

【74】Liang R, Chen J F, Kipshidze G, et al. High-power 2.2 μm diode lasers with heavily strained active region [J]. IEEE Photonics Technology Letters. 2011, 23(10): 603-605.

【75】Chichkov N B, Yadav A, Zherebtsov E, et al. Wavelength-tunable, GaSb-based, cascaded type-I quantum-well laser emitting over a range of 300 nm [J]. IEEE Photonics Technology Letters. 2018, 30(22): 1941-1943.

【76】Chai X L, Zhang Y, Liao Y P, et al. High power GaSb-based 2.6 μm room-temperature laser diodes with InGaAsSb/AlGaAsSb type Ⅰ quantum-wells [J]. Journal of Infrared and Millimeter Waves. 2017, 36(3): 257-260.
柴小力, 张宇, 廖永平, 等. 高功率GaSb基2.6微米InGaAsSb/AlGaAsSbⅠ型量子阱室温工作激光器 [J]. 红外与毫米波学报. 2017, 36(3): 257-260.

【77】Yang C A, Xie S W, Huang S S, et al. Research progress of antimonide infrared single mode semiconductor laser [J]. Infrared and Laser Engineering. 2018, 47(5): 0503002.
杨成奥, 谢圣文, 黄书山, 等. 锑化物中红外单模半导体激光器研究进展 [J]. 红外与激光工程. 2018, 47(5): 0503002.

【78】Yang C A, Xie S W, Zhang Y, et al. High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm [J]. Applied Physics Letters. 2019, 114(2): 021102.

【79】Müller A, Beck M, Faist J, et al. Electrically tunable, room-temperature quantum-cascade lasers [J]. Applied Physics Letters. 1999, 75(11): 1509-1511.

【80】Rochat M, Hofstetter D, Beck M, et al. Long-wavelength (λ≈16 μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition [J]. Applied Physics Letters. 2001, 79(26): 4271-4273.

【81】Lu Q Y, Razeghi M. Recent advances in room temperature, high-power terahertz quantum cascade laser sources based on difference-frequency generation [J]. Photonics. 2016, 3(3): 42.

【82】Razeghi M, Lu Q Y, Bandyopadhyay N, et al. Quantum cascade lasers: from tool to product [J]. Optics Express. 2015, 23(7): 8462-8475.

【83】Rothman L S. The evolution and impact of the HITRAN molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy and Radiative Transfer. 2010, 111(11): 1565-1567.

【84】Revin D G, Cockburn J W, Steer M J, et al. InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3 μm [J]. Applied Physics Letters. 2007, 90(2): 021108.

【85】Bandyopadhyay N, Bai Y, Slivken S, et al. High power operation of λ ~5.2-11 μm strain balanced quantum cascade lasers based on the same material composition [J]. Applied Physics Letters. 2014, 105(7): 071106.

【86】Szerling A, Slivken S, Razeghi M. High peak power 16 μm InP-related quantum cascade laser [J]. Opto-Electronics Review. 2017, 25(3): 205-208.

【87】Chevalier P, Piccardo M, Anand S, et al. Watt-level widely tunable single-mode emission by injection-locking of a multimode Fabry-Perot quantum cascade laser [J]. Applied Physics Letters. 2018, 112(6): 061109.

【88】Yan F L, Zhang J C, Jia Z W, et al. High-power phase-locked quantum cascade laser array emitting at λ~4.6 μm [J]. AIP Advances. 2016, 6(3): 035022.

【89】Bai Y, Bandyopadhyay N, Tsao S, et al. Room temperature quantum cascade lasers with 27% wall plug efficiency [J]. Applied Physics Letters. 2011, 98(18): 181102.

【90】Lyakh A, Suttinger M, Go R, et al. 5. 6 μm quantum cascade lasers based on a two-material active region composition with a room temperature wall-plug efficiency exceeding 28% [J]. Applied Physics Letters. 2016, 109(12): 121109.

【91】Hugi A, Villares G, Blaser S, et al. Mid-infrared frequency comb based on a quantum cascade laser [J]. Nature. 2012, 492(7428): 229-233.

【92】Lu Q Y, Razeghi M, Slivken S, et al. High power frequency comb based on mid-infrared quantum cascade laser at λ ~9 μm [J]. Applied Physics Letters. 2015, 106(5): 051105.

【93】Vijayraghavan K, Jiang Y, Jang M, et al. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers [J]. Nature Communications. 2013, 4: 2021.

【94】Laffaille P, Moreno J C, Teissier R, et al. High temperature operation of short wavelength InAs-based quantum cascade lasers [J]. AIP Advances. 2012, 2(2): 022119.

【95】Bahriz M, Lollia G, Baranov A N, et al. InAs/AlSb quantum cascade lasers operating near 20 μm [J]. Electronics Letters. 2013, 49(19): 1238-1240.

【96】Loghmari Z, Bahriz M, Meguekam A, et al. Continuous wave operation of InAs-based quantum cascade lasers at 20 μm [J]. Applied Physics Letters. 2019, 115(15): 151101.

【97】Soibel A, Wright M W, Farr W, et al. High-speed operation of interband cascade lasers [J]. Electronics Letters. 2009, 45(5): 264-265.

【98】Tian Z, Li L, Ye H, et al. InAs-based interband cascade lasers with emission wavelength at 10.4 μm [J]. Electronics Letters. 2012, 48(2): 113.

【99】Li L, Jiang Y C, Ye H, et al. Low-threshold InAs-based interband cascade lasers operating at high temperatures [J]. Applied Physics Letters. 2015, 106(25): 251102.

【100】Jiang Y C, Li L, Ye H, et al. InAs-based single-mode distributed feedback interband cascade lasers [J]. IEEE Journal of Quantum Electronics. 2015, 51(9): 1-7.

引用该论文

Chen Lianghui,Yang Guowen,Liu Yuxian. Development of Semiconductor Lasers[J]. Chinese Journal of Lasers, 2020, 47(5): 0500001

陈良惠,杨国文,刘育衔. 半导体激光器研究进展[J]. 中国激光, 2020, 47(5): 0500001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF