Advanced Photonics, 2020, 2 (2): 026003, Published Online: Apr. 30, 2020   

Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach Download: 720次

Author Affiliations
1 University of New South Wales, School of Engineering and Information Technology, Canberra, Australia
2 Nottingham Trent University, School of Science & Technology, Department of Engineering, Advanced Optics and Photonics Laboratory, Nottingham, United Kingdom
3 Australian National University, Research School of Physics, Nonlinear Physics Centre, Canberra, Australia
4 Australian National University, Research School of Physics, ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Canberra, Australia
5 Queensland University of Technology, School of Electrical Engineering and Computer Science, Brisbane, Queensland, Australia
6 Australian National University, College of Engineering and Computer Science, Canberra, Australia
Abstract
A key concept underlying the specific functionalities of metasurfaces is the use of constituent components to shape the wavefront of the light on demand. Metasurfaces are versatile, novel platforms for manipulating the scattering, color, phase, or intensity of light. Currently, one of the typical approaches for designing a metasurface is to optimize one or two variables among a vast number of fixed parameters, such as various materials’ properties and coupling effects, as well as the geometrical parameters. Ideally, this would require multidimensional space optimization through direct numerical simulations. Recently, an alternative, popular approach allows for reducing the computational cost significantly based on a deep-learning-assisted method. We utilize a deep-learning approach for obtaining high-quality factor (high-Q) resonances with desired characteristics, such as linewidth, amplitude, and spectral position. We exploit such high-Q resonances for enhanced light–matter interaction in nonlinear optical metasurfaces and optomechanical vibrations, simultaneously. We demonstrate that optimized metasurfaces achieve up to 400-fold enhancement of the third-harmonic generation; at the same time, they also contribute to 100-fold enhancement of the amplitude of optomechanical vibrations. This approach can be further used to realize structures with unconventional scattering responses.

Lei Xu, Mohsen Rahmani, Yixuan Ma, Daria A. Smirnova, Khosro Zangeneh Kamali, Fu Deng, Yan Kei Chiang, Lujun Huang, Haoyang Zhang, Stephen Gould, Dragomir N. Neshev, Andrey E. Miroshnichenko. Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach[J]. Advanced Photonics, 2020, 2(2): 026003.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!