首页 > 论文 > 激光与光电子学进展 > 56卷 > 11期(pp:110003--1)

基于光谱烧孔效应的激光稳频技术研究与进展

Research and Development on Laser Frequency Stabilization Based on Spectral Hole-Burning Effect

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于低温稀土离子掺杂晶体中的光谱烧孔效应的激光稳频技术,以低温下稀土离子掺杂晶体中的光谱烧孔为频率锁定参考,有更低的热噪声极限,而且,与基于法布里-珀罗参考腔的激光稳频技术相比,该技术具有对外界温度、压力和加速度的变化更不敏感的优势,因此其频率稳定度理论上可达10 -17量级,能实现与法布里-珀罗参考腔可比拟甚至超越的稳频效果。从理论原理、技术实现、国内外研究进展几方面介绍了基于光谱烧孔效应的激光稳频技术,并对其在频率稳定技术领域的发展前景进行了展望。

Abstract

Laser frequency stabilization based on the spectral hole-burning effect in the cryogenic rare-earth-ion-doped crystal makes use of the spectral holes in the absorption of doped ions as the frequency reference. This technique has a low thermal noise limit. In comparison with the laser frequency stabilization technique based on the Fabry-Perot cavity, the proposed laser frequency stabilization technique is more insensitive to temperature, pressure, and acceleration, thereby featuring its viability to let frequency stabilization reach the theoretical limit of 10 -17, which is comparable or even beyond with that of a Fabry-Perot cavity. The laser frequency stabilization technique based on spectral hole-burning effect is introduced from the aspects of theoretical principle, technical realization, and research progress at home and abroad. Furthermore, its development trend in the field of frequency stabilization is prospected.

中国激光微信矩阵
补充资料

中图分类号:O436

DOI:10.3788/LOP56.110003

所属栏目:综述

基金项目:国家自然科学基金青年基金;

收稿日期:2018-11-22

修改稿日期:2019-01-07

网络出版日期:2019-06-13

作者单位    点击查看

韩琳:中国科学院理化技术研究所功能晶体与激光技术重点实验室激光物理与技术研究中心, 北京 100190
林弋戈:中国计量科学研究院时间频率计量研究所, 北京 100029
杨晶:中国科学院理化技术研究所功能晶体与激光技术重点实验室激光物理与技术研究中心, 北京 100190
蓝英杰:中国科学院理化技术研究所功能晶体与激光技术重点实验室激光物理与技术研究中心, 北京 100190
李烨:中国计量科学研究院时间频率计量研究所, 北京 100029
王小军:中国科学院理化技术研究所功能晶体与激光技术重点实验室激光物理与技术研究中心, 北京 100190
薄勇:中国科学院理化技术研究所功能晶体与激光技术重点实验室激光物理与技术研究中心, 北京 100190
彭钦军:中国科学院理化技术研究所功能晶体与激光技术重点实验室激光物理与技术研究中心, 北京 100190

联系人作者:韩琳(hanlin@mail.ipc.ac.cn)

备注:国家自然科学基金青年基金;

【1】Pollnau M, Bernhardi E H, Worhoff K et al. Dual-wavelength narrow-linewidth lasers and their applications. [C]∥Advanced Solid State Lasers, October 27 - November 01, 2013, Paris. Washington D. C.: Optical Society of America. ATu1A, (2013).

【2】Becker A, Sichkovskyi V, Rippien A et al. InP-based narrow-linewidth widely tunable quantum dot laser device for high-capacity coherent optical communication. [C]∥Photonic Networks; 18. ITG-Symposium, May 11-12, 2017, Leipzig, Germany. New York: IEEE. 18, 134-136(2017).

【3】Bernhardi E H, de Ridder R M, W rhoff K et al. . Rare-earth-ion-doped ultra-narrow-linewidth lasers on a silicon chip and applications to intra-laser-cavity optical sensing. Proceedings of SPIE. 8599, (2013).

【4】Chen H Q, Jiang Y Y, Bi Z Y et al. Progress and trend of narrow-linewidth lasers. Science China Technological Sciences. 56(7), 1589-1596(2013).

【5】Shen H, Li L F and Chen L S. Lasers with ultra-narrow linewidth: theories and applications of laser frequency stabilization. Physics. 45(7), 441-448(2016).
沈辉, 李刘锋, 陈李生. 超窄线宽激光: 激光稳频原理及其应用. 物理. 45(7), 441-448(2016).

【6】Cao J, Zhang P, Shang J et al. A compact, transportable single-ion optical clock with 7.8×10 -17 systematic uncertainty . Applied Physics B. 123(4), (2017).

【7】Ludlow A D, Boyd M M, Ye J et al. Optical atomic clocks. Reviews of Modern Physics. 87(2), 637-701(2015).

【8】Ludlow A D, Huang X, Notcutt M et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10 -15. Optics Letters. 32(6), 641-643(2007).

【9】Kessler T, Hagemann C, Grebing C et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photonics. 6(10), 687-692(2012).

【10】Weng W L, Anstie J D, Stace T M et al. Nano-Kelvin thermometry and temperature control:beyond the thermal noise limit. Physical Review Letters. 112(16), (2014).

【11】Notcutt M, Ma L S, Ludlow A D et al. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers. Physical Review A. 73(3), (2006).

【12】H fner S, Falke S, Grebing C et al. 8×10 -17 fractional laser frequency instability with a long room-temperature cavity . Optics Letters. 40(9), 2112-2115(2015).

【13】Cone R L, Thiel C W, Sun Y C et al. Quantum information, laser frequency stabilization, and optical signal processing with rare-earth doped materials. [C]∥Laser Science, October 6-10, 2013, Orlando, Florida United States. Washington D. C.: Optical Society of America. LTu1G, (2013).

【14】Michael J T, Lars R, Tara M F et al. Frequency-stabilization to 6×10 -16 via spectral-hole burning . Nature Photonics. 5(11), 688-673(2011).

【15】Thorpe M J, Leibrandt D R and Rosenband T. Shifts of optical frequency references based on spectral-hole burning in Eu 3+∶Y2SiO5. New Journal of Physics. 15(3), (2013).

【16】Leibrandt D R, Thorpe M J, Notcutt M et al. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments. Optics Express. 19(4), 3471-3482(2011).

【17】Julsgaard B, Walther A, Kr ll S et al. Understanding laser stabilization using spectral hole burning. Optics Express. 15(18), 11444-11465(2007).

【18】Rippe L, Julsgaard B, Walther A et al. -11-05)[2018-11-05]. https:∥arxiv.org/abs/quant-ph/0611056. (2006).

【19】Sellin P B, Strickland N M, Carlsten J L et al. Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning. Optics Letters. 24(15), 1038-1040(1999).

【20】Strickland N M, Sellin P B, Sun Y et al. Laser frequency stabilization using regenerative spectral hole burning. Physical Review B. 62(3), 1473-1476(2000).

【21】B ttger T, Pryde G J, Strickland N M et al. Semiconductor lasers stabilized to spectral holes in rare-earth crystals. Optics and Photonics News. 12(12), (2001).

【22】Sellin P B, Strickland N M, B ttger T et al. Laser stabilization at 1536 nm using regenerative spectral hole burning. Physical Review B. 63(15), (2001).

【23】B ttger T, Sun Y, Pryde G J et al. nm. Journal of Luminescence, 2001. 94/95, 565-568(1536).

【24】Pryde G J, B ttger T, Cone R L et al. Semiconductor lasers stabilized to spectral holes in rare earth crystals to a part in 1013 and their application to devices and spectroscopy. Journal of Luminescence. 98(1/2/3/4), 309-315(2002).

【25】B ttger T, Pryde G J and Cone R L. Programmable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning. Optics Letters. 28(3), 200-202(2003).

【26】B ttger T, Pryde G J, Thiel C W et al. Laser frequency stabilization at 1.5 microns using ultranarrow inhomogeneous absorption profiles in Er 3+: LiYF4. Journal of Luminescence. 127(1), 83-88(2007).

【27】Chen Q F, Troshyn A, Ernsting I et al. Spectrally narrow, long-term stable optical frequency reference based on a Eu 3+∶Y2SiO5 crystal at cryogenic temperature . Physical Review Letters. 107(22), (2011).

【28】Leibrandt D R, Thorpe M J, Chou C W et al. Absolute and relative stability of an optical frequency reference based on spectral hole burning in Eu 3+: Y2SiO5. Physical Review Letters. 111(23), (2013).

【29】Sabooni M, Li Q, Rippe L et al. Spectral engineering of slow light, cavity line narrowing, and pulse compression. Physical Review Letters. 111(18), (2013).

【30】Thiel C W, Cone R L and B ttger T. Laser linewidth narrowing using transient spectral hole burning. Journal of Luminescence. 152, 84-87(2014).

【31】Thiel C W, B ttger T and Cone R L. Rare-earth-doped materials for applications in quantum information storage and signal processing. Journal of Luminescence. 131(3), 353-361(2011).

【32】Drever R W P, Hall J L, Kowalski F V et al. . Laser phase and frequency stabilization using an optical resonator. Applied Physics Photophysics and Laser Chemistry. 31(2), 97-105(1983).

【33】Young B C, Cruz F C, Itano W M et al. Visible Lasers with Subhertz Linewidths. Physical Review Letters. 82(19), 3799-3802(1999).

【34】Notcutt M, Ma L S, Ye J et al. Simple and compact 1 Hz laser system via an improved mounting configuration of a reference cavity. Optics Letters. 30(14), 1815-1817(2005).

【35】Chen L, Hall J L, Ye J et al. Vibration-induced elastic deformation of Fabry-Perot cavities. Physical Review A. 74(5), (2006).

【36】Nicholson T L, Martin M J, Williams J R et al. Comparison of two independent Sr optical clocks with 1×10 -17 stability at 10 3 s . Physical Review Letters. 109(23), (2012).

【37】Matei D G, Legero T, H fner S et al. 1.5 μm lasers with sub-10 mHz linewidth. Physical Review Letters. 118(26), (2017).

【38】Tay J W, Farr W G, Ledingham P M et al. Hybrid optical and electronic laser locking using slow light due to spectral holes. Physical Review A. 87(6), (2013).

【39】Cook S, Rosenband T and Leibrandt D R. Laser-frequency stabilization based on steady-state spectral-hole burning in Eu3+∶Y2SiO5. Physical Review Letters. 114(25), (2015).

【40】Gobron O, Jung K, Galland N et al. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals. Optics Express. 25(13), 15539-15548(2017).

【41】You Q. Spectral hole burning: a research tools with significant application potential. Laser & Optoelectronics Progress. 29(9), 25-25(1992).
具有重大应用潜力的研究工具. 激光与光电子学进展. 29(9), 25-25(1992).

【42】Zhou F X. Persistence spectral hole burning and its application. Laser & Optoelectronics Progress. 25(1), 13-15(1988).
周福新. 持久性光谱烧孔及其应用. 激光与光电子学进展. 25(1), 13-15(1988).

【43】Huang J, Tang Z L and Niang R S. Technology of spectral hole burning. Optical Technique. 26(4), 379-382(2000).
黄菁, 唐志列, 梁瑞生. 光谱烧孔技术. 光学技术. 26(4), 379-382(2000).

【44】Xue S L, Chen L B, Zhao Y Y et al. Persistent spectral hole burning of Eu 3+doped Y2SiO5crystal at 579.62 nm . Journal of the Chinese Rare Earth Society. 24(4), 510-512(2006).
薛绍林, 陈凌冰, 赵有源 等. 579.62 nm波长处Y2SiO5∶Eu 3+晶体永久性光谱烧孔 . 中国稀土学报. 24(4), 510-512(2006).

【45】Wang W. Measurement of tunable laser frequency stability based on spectral-hole burning. Tianjin: Tianjin University of Technology. (2013).
王伟. 基于光谱烧孔的可调谐激光器频率稳定度测量. 天津: 天津理工大学. (2013).

【46】Fan X L. Reduction of residual amplitude modulation in narrow linewidth PDH laser frequency stabilization technology. Hangzhou: China University of Metrology. (2016).
范夏雷. 超窄线宽PDH稳频技术中的剩余幅度调制(RAM)抑制. 杭州: 中国计量大学. (2016).

【47】Su J, Jiao M X, Ma Y Y et al. Design of pound-drever-hall laser frequency stabilization system using the quadrature demodulation. Chinese Journal of Lasers. 43(3), (2016).
苏娟, 焦明星, 马源源 等. 正交解调Pound-Drever-Hall激光稳频系统设计. 中国激光. 43(3), (2016).

【48】Milani G, Rauf B, Barbieri P et al. Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique. Optics Letters. 42(10), 1970-1973(2017).

【49】Han L, Bo Y, Yang J et al. -08-18. (2017).
韩琳, 薄勇, 杨晶 等. -08-18. . 一种可调谐稳频激光器: 107069416A. (2017).

引用该论文

Lin Han,Yige Lin,Jing Yang,Yingjie Lan,Ye Li,Xiaojun Wang,Yong Bo,Qinjun Peng. Research and Development on Laser Frequency Stabilization Based on Spectral Hole-Burning Effect[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110003

韩琳,林弋戈,杨晶,蓝英杰,李烨,王小军,薄勇,彭钦军. 基于光谱烧孔效应的激光稳频技术研究与进展[J]. 激光与光电子学进展, 2019, 56(11): 110003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF