首页 > 论文 > 中国激光 > 47卷 > 9期(pp:912002--1)

基于标记配对相干态的被动测量设备无关量子密钥分配

Passive Measurement-Device-Independent Quantum Key Distribution Based on Heralded Pair Coherent States

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对主动诱骗态方案可能引入边信息的缺点,通过结合旋转不变态,研究了基于标记配对相干态和脉冲位置调制的被动诱骗态测量设备无关量子密钥分配(MDI-QKD)协议。比较了传统MDI-QKD协议、基于旋转不变态的被动诱骗态MDI-QKD协议和具有不同帧长的基于旋转不变态的被动诱骗态MDI-QKD协议的性能优劣。仿真结果表明,引入旋转不变态和脉冲位置调制可以提高密钥生成率和安全传输距离。随着帧长的增加,协议的性能得以改善。因此,在没有强度调制的情况下,该协议避免了光源侧信道的影响,密钥生成率较高。

Abstract

Aiming at the disadvantage of the active decoy-state scheme to introduce extra information, we investigate the passive decoy-state measurement-device-independent quantum key distribution (MDI-QKD) protocol based on heralded pair coherent states and pulse-position modulation by means of the rotation-invariant photonic state. The performance comparison among the traditional MDI-QKD protocol, the passive decoy-state MDI-QKD protocol based on rotation-invariant photonic states, and the passive decoy-state MDI-QKD protocol based on rotation-invariant photonic states with different frame lengths is conducted. The simulation results show that the key generation rate and the secure transmission distance can be improved if rotation-invariant photonic states and the pulse-position modulation are introduced. Moreover, with the increase of frame length, the performance of the protocol is also improved. Therefore, in the absence of intensity modulation, this protocol can avoid the influence of light side channels and can be used to increase the key generation rate.

广告组4 - 量子光学(超导单光子,符合计数器)
补充资料

中图分类号:TN918

DOI:10.3788/CJL202047.0912002

所属栏目:量子光学

基金项目:国家自然科学基金;

收稿日期:2020-03-09

修改稿日期:2020-05-06

网络出版日期:2020-09-01

作者单位    点击查看

何业锋:西安邮电大学网络空间安全学院, 陕西 西安 710121
李春雨:西安邮电大学通信与信息工程学院, 陕西 西安 710121
郭佳瑞:西安邮电大学网络空间安全学院, 陕西 西安 710121
赵艳坤:西安邮电大学通信与信息工程学院, 陕西 西安 710121

联系人作者:李春雨(2429022663@qq.com)

备注:国家自然科学基金;

【1】Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol [J]. Physical Review Letters. 2000, 85(2): 441-444.

【2】Mayers D. Unconditional security in quantum cryptography [J]. Journal of the ACM (JACM). 2001, 48(3): 351-406.

【3】Gottesman D, Lo H K, Lutkenhaus N, et al. Security of quantum key distribution with imperfect devices . [C]∥International Symposium on Information Theory, June 27- July 2, 2004, Chicago, IL, USA. New York: IEEE. 2004, 8178599.

【4】Sun S H, Gao M, Li C Y, et al. Practical decoy-state measurement-device-independent quantum key distribution [J]. Physical Review A. 2013, 87(5): 052329.

【5】Dong C, Zhao S H, Zhao W H, et al. Analysis of measurement device independent quantum key distribution with an asymmetric channel transmittance efficiency [J]. Acta Physica Sinica. 2014, 63(3): 030302.
东晨, 赵尚弘, 赵卫虎, 等. 非对称信道传输效率的测量设备无关量子密钥分配研究 [J]. 物理学报. 2014, 63(3): 030302.

【6】Du Y N, Xie W Z, Jin X, et al. Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states [J]. Acta Physica Sinica. 2015, 64(11): 110301.
杜亚男, 解文钟, 金璇, 等. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析 [J]. 物理学报. 2015, 64(11): 110301.

【7】Zhu Z D, Zhang X, Zhao S H, et al. Measurement-device-independent quantum key distribution protocols for heralded pair coherent state [J]. Laser & Optoelectronics Progress. 2017, 54(12): 122703.
朱卓丹, 张茜, 赵尚弘, 等. 预报相干光子对的测量设备无关量子密钥分发协议 [J]. 激光与光电子学进展. 2017, 54(12): 122703.

【8】Dong C, Zhao S H, Shi L. Measurement device-independent quantum key distribution with heralded pair coherent state [J]. Quantum Information Processing. 2016, 15(10): 4253-4263.

【9】Mao Q P, Wang L, Ma Y Y, et al. Measurement-device-independent quantum key distribution with pulse-position modulation [J]. Acta Photonica Sinica. 2018, 47(3): 0306007.

【10】He Y F, Wang D, Yang H J, et al. Quantum key distribution based on heralded single photon sources and quantum memory [J]. Chinese Journal of Lasers. 2019, 46(4): 0412001.
何业锋, 王登, 杨红娟, 等. 基于指示单光子源和量子存储的量子密钥分配 [J]. 中国激光. 2019, 46(4): 0412001.

【11】Zhu Q L, Shi L, Wei J H, et al. Background light suppression in free space quantum key distribution [J]. Laser & Optoelectronics Progress. 2018, 55(6): 060004.
朱秋立, 石磊, 魏家华, 等. 自由空间量子密钥分配的背景光抑制 [J]. 激光与光电子学进展. 2018, 55(6): 060004.

【12】Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution [J]. Physical Review Letters. 2012, 108(13): 130503.

【13】Chi H H, Yu Z W, Wang X B. Decoy-state method of quantum key distribution with both source errors and statistics fluctuations [J]. Physical Review A. 2012, 86(4): 042307.

【14】Mi J L, Wang F Q, Lin Q Q, et al. Decoy state quantum key distribution with dual detectors heralded single photon source [J]. Acta Physica Sinica. 2008, 57(2): 678-684.
米景隆, 王发强, 林青群, 等. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用 [J]. 物理学报. 2008, 57(2): 678-684.

【15】Zhang Y, Chen W, Wang S, et al. Practical non-Poissonian light source for passive decoy state quantum key distribution [J]. Optics Letters. 2010, 35(20): 3393-3395.

【16】Mauerer W, Silberhorn C. Quantum key distribution with passive decoy state selection [J]. Physical Review A. 2007, 75(5): 050305.

【17】He Y F, Yang H J, Wang D, et al. Quantum key distribution based on heralded pair coherent state and orbital angular momentum [J]. Acta Optica Sinica. 2019, 39(4): 0427001.
何业锋, 杨红娟, 王登, 等. 基于标记配对相干态和轨道角动量的量子密钥分配 [J]. 光学学报. 2019, 39(4): 0427001.

【18】Zhu Z D, Zhao S H, Gu W Y, et al. Orbital-angular-momentum-encoded measurement-device-independent quantum key distributions under atmospheric turbulence [J]. Acta Optica Sinica. 2018, 38(12): 1227002.
朱卓丹, 赵尚弘, 谷文苑, 等. 大气湍流下的轨道角动量编码测量设备无关量子密钥分发 [J]. 光学学报. 2018, 38(12): 1227002.

【19】Tang Z L, Li M, Wei Z J, et al. The quantum key distribution system based on polarization states produced by phase modulation [J]. Acta Physica Sinica. 2005, 54(6): 2534-2539.
唐志列, 李铭, 魏正军, 等. 相位-偏振编码的量子保密通信系统的研究 [J]. 物理学报. 2005, 54(6): 2534-2539.

【20】Piccirillo B, Dambrosio V, Slussarenko S, et al. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate [J]. Applied Physics Letters. 2010, 97(24): 241104.

【21】Dong C, Zhao S H, Dong Y, et al. Measurement of device-independent quantum key distribution for the rotation invariant photonic state [J]. Acta Physica Sinica. 2014, 63(17): 170303.
东晨, 赵尚弘, 董毅, 等. 基于旋转不变态的测量设备无关量子密钥分配协议研究 [J]. 物理学报. 2014, 63(17): 170303.

【22】Wang X, Wang Y, Chen R K, et al. Measurement-device-independent quantum key distribution with heralded pair coherent state [J]. Laser Physics. 2016, 26(6): 065203.

【23】Zhu F, Zhang C H, Liu A P, et al. Enhancing the performance of the measurement-device-independent quantum key distribution with heralded pair-coherent sources [J]. Physics Letters A. 2016, 380(16): 1408-1413.

【24】Li Y Q, Zhu Y, Wang J P. Principle and technology of optical communication[M]. Beijing: Science Press, 2006, 309-312.
李玉权, 朱勇, 王江平. 光通信原理与技术[M]. 北京: 科学出版社, 2006, 309-312.

【25】Zhang T. Study on high efficient and long-distance measurement device independent quantum key distribution [D]. Nanjing: Nanjing University of Posts and Telecommunications. 2016.
张涛. 高效长距离测量装置无关量子密钥分发协议的研究 [D]. 南京: 南京邮电大学. 2016.

【26】Zhang Y Q, Djordjevic I B. Generalized PPM-based BB84 QKD protocol . [C]∥2014 16th International Conference on Transparent Optical Networks (ICTON), July 6-10,2014, Graz, Austria. New York: IEEE. 2014, 1-4.

【27】Wang L, Zhou Y Y, Zhou X J, et al. Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation [J]. Optoelectronics Letters. 2018, 14(2): 138-142.

【28】Zhang S L, Zou X B, Li C F, et al. A universal coherent source for quantum key distribution [J]. Chinese Science Bulletin. 2009, 54(11): 1863-1871.

【29】Agarwal G S. Generation of pair coherent states and squeezing via the competition of four-wave mixing and amplified spontaneous emission [J]. Physical Review Letters. 1986, 57(7): 827-830.

【30】Dong C, Zhao S H, Sun Y. Measurement-device-independent quantum key distribution with q-plate [J]. Quantum Information Processing. 2015, 14(12): 4575-4584.

【31】Slussarenko S, Murauski A, Du T, et al. Tunable liquid crystal q-plates with arbitrary topological charge [J]. Optics Express. 2011, 19(5): 4085-4090.

【32】Shan Y Z, Sun S H, Ma X C, et al. Measurement-device-independent quantum key distribution with a passive decoy-state method [J]. Physical Review A. 2014, 90(4): 042334.

引用该论文

He Yefeng,Li Chunyu,Guo Jiarui,Zhao Yankun. Passive Measurement-Device-Independent Quantum Key Distribution Based on Heralded Pair Coherent States[J]. Chinese Journal of Lasers, 2020, 47(9): 0912002

何业锋,李春雨,郭佳瑞,赵艳坤. 基于标记配对相干态的被动测量设备无关量子密钥分配[J]. 中国激光, 2020, 47(9): 0912002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF