首页 > 论文 > 中国激光 > 47卷 > 7期(pp:701013--1)

纳米激光器进展、新物理问题以及技术挑战 (特邀综述)

Nanolasers: Progress, New Physics and Technical Challenges (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

纳米光学是光子学与纳米技术交叉产生的一个新的前沿基础方向,可以使人们在纳米尺度上操控光与物质的相互作用以及探索新的物理现象。纳米激光器是一种新型光源,有关它的研究是纳米光学领域的一个重要分支。由于其尺度特性,并且对光有着很高的限制性,近年来关于纳米激光器的研究吸引着越来越多科研工作者的注意。从激光器的微型化角度出发,综述了该领域近年来取得的一些令人鼓舞的进展。首先,对近年来成功实现的各类新型激光器及其特点进行了简述;其次,对激光器在微纳尺度出现的新物理问题进行了分析,并阐述其最新进展;最后,对纳米激光器在实现应用过程中存在的一些技术挑战进行介绍和分析。

Abstract

Nanooptics is a new frontier and fundamental direction generated by the intersection of photonics and nanotechnology, which enables people to manipulate the interaction between light and matter at the nanoscale and explore new physical phenomenons. Nanolaser is a new kind of light source and its research is an important branch in the field of nanooptics. Since the feature of small size and strong confinement, nanolasers have attracted more and more attentions from researchers in recent years. In this paper, some exciting progresses in laser miniaturization are reviewed. First, we briefly describe various new types of lasers realized in recent years and their characteristics. Second, the new physical problems of micro- /nano-lasers are analyzed and the latest progresses are presented. Finally, some technical challenges in the application of nanolasers are introduced and considered.

广告组5 - 光束分析仪
补充资料

中图分类号:O436

DOI:10.3788/CJL202047.0701013

所属栏目:“半导体激光器”专题

基金项目:国家自然科学基金、浙江省基础公益研究计划项目、浙江大学现代光学仪器国家重点实验室开放课题;

收稿日期:2020-02-04

修改稿日期:2020-03-24

网络出版日期:2020-07-01

作者单位    点击查看

张浩然:杭州电子科技大学智能微传感器与微系统教育部工程研究中心, 浙江 杭州 310018杭州电子科技大学电子信息学院, 浙江 杭州 310018
孙嘉诚:杭州电子科技大学卓越学院, 浙江 杭州 310018
邓志磊:杭州电子科技大学智能微传感器与微系统教育部工程研究中心, 浙江 杭州 310018杭州电子科技大学电子信息学院, 浙江 杭州 310018
邹俊龙:杭州电子科技大学通信工程学院, 浙江 杭州 310018
陈佳炜:杭州电子科技大学卓越学院, 浙江 杭州 310018
何熙:杭州电子科技大学卓越学院, 浙江 杭州 310018
王涛:杭州电子科技大学智能微传感器与微系统教育部工程研究中心, 浙江 杭州 310018杭州电子科技大学电子信息学院, 浙江 杭州 310018
王高峰:杭州电子科技大学智能微传感器与微系统教育部工程研究中心, 浙江 杭州 310018杭州电子科技大学电子信息学院, 浙江 杭州 310018

联系人作者:王涛(wangtao@hdu.edu.cn); 王高峰(gaofeng@hdu.edu.cn);

备注:国家自然科学基金、浙江省基础公益研究计划项目、浙江大学现代光学仪器国家重点实验室开放课题;

【1】Ning C Z. Semiconductor nanolasers [J]. Progress in Physics. 2011, 31(3): 145-160.
宁存政. 半导体纳米激光 [J]. 物理学进展. 2011, 31(3): 145-160.

【2】Wineland D J, Itano W M. Laser cooling [J]. Physics Today. 1987, 40(6): 34-40.

【3】Hall J L. Stabilized lasers and precision measurements [J]. Science. 1978, 202(4364): 147-156.

【4】O''''Brien J L. Furusawa A, Vuckovic J. Photonic quantum technologies [J]. Nature Photonics. 2009, 3(12): 687-695.

【5】Maiman T H. Stimulated optical radiation in ruby [J]. Nature. 1960, 187(4736): 493-494.

【6】Heard H G. Ultra-violet gas laser at room temperature [J]. Nature. 1963, 200(4907): 667.

【7】Chen S L, Zhang X, Jiang J, et al. VCSEL side-pumped all solid-state lasers [J]. Chinese Journal of Lasers. 2018, 45(10): 1001001.
陈思露, 张鑫, 蒋静, 等. VCSEL侧面抽运的全固态激光器 [J]. 中国激光. 2018, 45(10): 1001001.

【8】Myer J A, Itzkan I, Kierstead E. Dye lasers in the ultraviolet [J]. Nature. 1970, 225(5232): 544-545.

【9】Basov N G. Semiconductor lasers [J]. Science. 1965, 149(3686): 821-827.

【10】Zhao L M, Wang Q, Yan C L, et al. 980 nm high power vertical cavity surface emitting laser [J]. Chinese Journal of Lasers. 2004, 31(2): 142-144.
赵路民, 王青, 晏长岭, 等. 980 nm高功率垂直腔面发射激光器 [J]. 中国激光. 2004, 31(2): 142-144.

【11】Baba T, Fujita P, Sakai A, et al. Lasing characteristics of GaInAsP-InP strained quantum-well microdisk injection lasers with diameter of 2-10 μm [J]. IEEE Photonics Technology Letters. 1997, 9(7): 878-880.

【12】Eaton S W, Fu A, Wong A B, et al. Semiconductor nanowire lasers [J]. Nature Reviews Materials. 2016, 1(6): 16028.

【13】Li C W, Chen X, Cai Y Y, et al. Design of one-dimensional edge-emitting organic semiconductor photonic crystal lasers [J]. Acta Optica Sinica. 2018, 38(9): 0914001.
李长伟, 陈笑, 蔡园园, 等. 一维边发射有机半导体光子晶体激光器设计 [J]. 光学学报. 2018, 38(9): 0914001.

【14】Wiersma D S, Cavalieri S. A temperature-tunable random laser [J]. Nature. 2001, 414(6865): 708-709.

【15】Kwon S H, Kang J H, Kim S K, et al. Surface plasmonic nanodisk/nanopan lasers [J]. IEEE Journal of Quantum Electronics. 2011, 47(10): 1346-1353.

【16】Oulton R F. Surface plasmon lasers: sources of nanoscopic light [J]. Materials Today. 2012, 15(1/2): 26-34.

【17】Zhong X L, Li Z Y. All-analytical semiclassical theory of spaser performance in a plasmonic nanocavity [J]. Physical Review B. 2013, 88: 085101.

【18】Cheng C, Yuan F, Cheng X Y. Study of an unsaturated PbSe QD-doped fiber laser by numerical simulation and experiment [J]. IEEE Journal of Quantum Electronics. 2014, 50(11): 882-889.

【19】Cheng C, Bo J F, Yan J H, et al. Experimental realization of a PbSe-quantum-dot doped fiber laser [J]. IEEE Photonics Technology Letters. 2013, 25(6): 572-575.

【20】Cheng C, Wu Y F. Numerical modeling of an unsaturated single-mode fiber laser doped with CdSe/ZnS quantum dots [J]. Acta Optica Sinica. 2011, 31(10): 1014001.
程成, 吴寅飞. CdSe/ZnS量子点非饱和单模光纤激光器的数值建模 [J]. 光学学报. 2011, 31(10): 1014001.

【21】Ning C Z. Semiconductor nanolasers and the size-energy-efficiency challenge: a review [J]. Advanced Photonics. 2019, 1(1): 014002.

【22】Pan S H, Deka S S, El Amili A, et al. Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures [J]. Progress in Quantum Electronics. 2018, 59: 1-18.

【23】Hill M T, Gather M C. Advances in small lasers [J]. Nature Photonics. 2014, 8(12): 908-918.

【24】Soda H, Iga K, Kitahara C, et al. GaInAsP/InP surface emitting injection lasers [J]. Japanese Journal of Applied Physics. 1979, 18(12): 2329-2330.

【25】Iga K, Koyama F, Kinoshita S. Surface emitting semiconductor lasers [J]. IEEE Journal of Quantum Electronics. 1988, 24(9): 1845-1855.

【26】Iga K. Surface-emitting laser-its birth and generation of new optoelectronics field [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2000, 6(6): 1201-1215.

【27】National Research Council. Laser radar: , 2014.

【28】Ni C A, Chuang S L. Theory of high-speed nanolasers and nanoLEDs [J]. Optics Express. 2012, 20(15): 16450-16470.

【29】Marciniak M, Piskorski ?, G?bski M, et al. The vertical-cavity surface-emitting laser as a sensing device [J]. Journal of Lightwave Technology. 2018, 36(16): 3185-3192.

【30】G?bski M, Dems M, Wasiak M, et al. Monolithic subwavelength high-index-contrast grating VCSEL [J]. IEEE Photonics Technology Letters. 2015, 27(18): 1953-1956.

【31】Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Physical Review Letters. 1987, 58(20): 2059-2062.

【32】John S. Strong localization of photons in certain disordered dielectric superlattices [J]. Physical Review Letters. 1987, 58(23): 2486-2489.

【33】Painter O. Two-dimensional photonic band-Gap defect mode laser [J]. Science. 1999, 284(5421): 1819-1821.

【34】Yu Y, Xue W Q, Semenova E, et al. Demonstration of a self-pulsing photonic crystal Fano laser [J]. Nature Photonics. 2017, 11(2): 81-84.

【35】Noda S, Fujita M, Asano T. Spontaneous-emission control by photonic crystals and nanocavities [J]. Nature Photonics. 2007, 1(8): 449-458.

【36】Seo M, Jeong K, Yang J, et al. Low threshold current single-cell hexapole mode photonic crystal laser [J]. Applied Physics Letters. 2007, 90(17): 171122.

【37】Watanabe K, Kishi Y, Hachuda S, et al. Simultaneous detection of refractive index and surface charges in nanolaser biosensors [J]. Applied Physics Letters. 2015, 106(2): 021106.

【38】Couteau C, Larrue A, Wilhelm C, et al. Nanowire lasers [J]. Nanophotonics. 2015, 4(1): 90-107.

【39】Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science. 2001, 292(5523): 1897-1899.

【40】Ma Y G, Guo X, Wu X Q, et al. Semiconductor nanowire lasers [J]. Advances in Optics & Photonics. 2013, 5(3): 216-273.

【41】Xiao Y. Single-nanowire single-mode laser [D]. Hangzhou: Zhejiang University. 2011.
肖尧. 半导体单纳米线单模激光器 [D]. 杭州: 浙江大学. 2011.

【42】Chen Y Y, Tong C Z, Qin L, et al. Progress in surface plasmon polariton nano-laser technologies and applications [J]. Chinese Optics. 2012, 5(5): 453-463.
陈泳屹, 佟存柱, 秦莉, 等. 表面等离子体激元纳米激光器技术及应用研究进展 [J]. 中国光学. 2012, 5(5): 453-463.

【43】Xu L T, Li F, Liu Y H, et al. Surface plasmon nanolaser: principle, structure, characteristics and applications [J]. Applied Sciences. 2019, 9(5): 861.

【44】Oulton R F, Sorger V J, Zentgraf T, et al. Plasmon lasers at deep subwavelength scale [J]. Nature. 2009, 461(7264): 629-632.

【45】Lu Y J, Kim J, Chen H Y, et al. Plasmonic nanolaser using epitaxially grown silver film [J]. Science. 2012, 337(6093): 450-453.

【46】Lu Y J, Wang C Y, Kim J, et al. All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing [J]. Nano Letters. 2014, 14(8): 4381-4388.

【47】Tong K, Zhang Z G, Lu J R, et al. Hybrid plasmonic photonic crystal nano micro-cavity [J]. Chinese Journal of Lasers. 2014, 41(9): 0905009.
童凯, 张振国, 卢建如, 等. 混合光子晶体等离子激元纳米微腔 [J]. 中国激光. 2014, 41(9): 0905009.

【48】Cao H. Spatial confinement of laser light in active random media [J]. Physical Review Letters. 2000, 84(24): 5584-5587.

【49】Cao H. Lasing in random media [J]. Waves in Random Media. 2003, 13(3): R1-R39.

【50】Pickering T, Hamm J M, Page A F, et al. Cavity-free plasmonic nanolasing enabled by dispersionless stopped light [J]. Nature Communications. 2014, 5: 4972.

【51】Ding K, Diaz J O, Bimberg D, et al. Modulation bandwidth and energy efficiency of metallic cavity semiconductor nanolasers with inclusion of noise effects [J]. Laser & Photonics Reviews. 2015, 9(5): 488-497.

【52】Hill M T, Oei Y S, Smalbrugge B, et al. Lasing in metallic-coated nanocavities [J]. Nature Photonics. 2007, 1(10): 589-594.

【53】Nezhad M P, Simic A, Bondarenko O, et al. Room-temperature subwavelength metallo-dielectric lasers [J]. Nature Photonics. 2010, 4(6): 395-399.

【54】Ding K, Hill M T, Liu Z C, et al. Recordperformance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature [J]. Optics Express. 2013, 21(4): 4728-4733.

【55】Gu Q, Shane J, Vallini F, et al. Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers [J]. IEEE Journal of Quantum Electronics. 2014, 50(7): 499-509.

【56】Kwon S H, Kang J H, Seassal C, et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity [J]. Nano Letters. 2010, 10(9): 3679-3683.

【57】Ma R M, Oulton R F, Sorger V J, et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection [J]. Nature Materials. 2011, 10(2): 110-113.

【58】Khajavikhan M, Simic A, Katz M, et al. Thresholdless nanoscale coaxial lasers [J]. Nature. 2012, 482(7384): 204-207.

【59】Ning C Z. What is Laser Threshold? [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2013, 19(4): 1503604.

【60】Ota Y, Kakuda M, Watanabe K, et al. Thresholdless quantum dot nanolaser [J]. Optics Express. 2017, 25(17): 19981.

【61】Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems [J]. Physical Review Letters. 2003, 90(2): 027402.

【62】Ma R M, Oulton R F. Applications of nanolasers [J]. Nature Nanotechnology. 2018, 14: 12-22.

【63】Stockman M I. Nanoplasmonics: past, present, and glimpse into future [J]. Optics Express. 2011, 19(22): 22029-22106.

【64】Stockman M I. Spasers explained [J]. Nature Photonics. 2008, 2(6): 327-329.

【65】Noginov M, Zhu G, Belgrave A M, et al. Demonstration of a spaser-based nanolaser [J]. Nature. 2009, 460(7259): 1110-1112.

【66】Flynn R A, Kim C S, Vurgaftman I, et al. A room-temperature semiconductor spaser operating near 1.5 μm [J]. Optics Express. 2011, 19(9): 8954-8961.

【67】Yang A, Hoang T B, Dridi M, et al. Real-time tunable lasing from plasmonic nanocavity arrays [J]. Nature Communications. 2015, 6: 6939.

【68】Zhou W, Dridi M, Suh J Y, et al. Lasing action in strongly coupled plasmonic nanocavity arrays [J]. Nature Nanotechnology. 2013, 8(7): 506-511.

【69】Meng X G, Liu J J, Kildishev A V, et al. Highly directional spaser array for the red wavelength region [J]. Laser & Photonics Reviews. 2014, 8(6): 896-903.

【70】Hakala T K, Rekola H T, Vakevainen A I, et al. Lasing in dark and bright modes of a finite-sized plasmonic lattice [J]. Nature Communications. 2017, 8(1): 13687.

【71】Zhang H P, Jiang T, Gao Y F, et al. Single molecule detection by SERS of a spaser-based bowtie nanoantenna [J]. Chinese Journal of Lasers. 2014, 41(9): 0908002.
张昊鹏, 姜涛, 高永峰, 等. 表面等离子体受激辐射放大领结型纳米天线的SERS单分子探测 [J]. 中国激光. 2014, 41(9): 0908002.

【72】Ye Y, Wong Z J, Lu X F, et al. Monolayer excitonic laser [J]. Nature Photonics. 2015, 9(11): 733-737.

【73】Li Y Z, Zhang J X, Huang D D, et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity [J]. Nature Nanotechnology. 2017, 12(10): 987-992.

【74】Liu X Z, Galfsky T, Sun Z, et al. Strong light-matter coupling in two-dimensional atomic crystals [J]. Nature Photonics. 2015, 9(1): 30-34.

【75】Wu S, Buckley S, Schaibley J R, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds [J]. Nature. 2015, 520(7545): 69-72.

【76】Kuksenkov D V, Temkin H, Lear K L, et al. Spontaneous emission factor in oxide confined vertical-cavity lasers [J]. Applied Physics Letters. 1997, 70(1): 13-15.

【77】Wang T, Puccioni G P, Lippi G L. Dynamical buildup of lasing in mesoscale devices [J]. Scientific Reports. 2015, 5: 15858.

【78】Wang T, Puccioni G P, Lippi G L. Photon bursts at lasing onset and modelling issues in micro-VCSELs [J]. Journal of Modern Optics. 2020, 67(1): 55-68.

【79】Shin J, Ju Y, Shin H, et al. Spontaneous emission factor of oxidized vertical-cavity surface-emitting lasers from the measured below-threshold cavity loss [J]. Applied Physics Letters. 1997, 70(18): 2344-2346.

【80】Rice P R, Carmichael H J. Photon statistics of a cavity-QED laser:a comment on the laser-phase-transition analogy [J]. Physical Review A, Atomic, Molecular, and Optical Physics. 1994, 50(5): 4318-4329.

【81】Ma R M, Oulton R F, Sorger V J, et al. Plasmon lasers:coherent light source at molecular scales [J]. Laser & Photonics Reviews. 2013, 7(1): 1-21.

【82】Bj?rk G, Karlsson A, Yamamoto Y. Definition of a laser threshold [J]. Physical Review A. 1994, 50(2): 1675-1680.

【83】van Druten N J, Lien Y, Serrat C, et al. Laser with thresholdless intensity fluctuations [J]. Physical Review A. 2000, 62(5): 053808.

【84】Lebreton A, Abram I, Braive R, et al. Unequivocal differentiation of coherent and chaotic light through interferometric photon correlation measurements [J]. Physical Review Letters. 2013, 110(16): 163603.

【85】Roumpos G, Cundiff S T. Photon number distributions from a diode laser [J]. Optics Letters. 2013, 38(2): 139-141.

【86】Foster G T, Mielke S L, Orozco L A. Intensity correlations of a noise-driven diode laser [J]. Journal of the Optical Society of America B. 1998, 15(11): 2646-2653.

【87】Hachair X, Braive R, Lippi G L, et al. Identification of the stimulated-emission threshold in high-β nanoscale lasers through phase-space reconstruction [J]. Physical Review A. 2011, 83(5): 053836.

【88】Ates S, Gies C, Ulrich S M, et al. Influence of the spontaneous optical emission factor β on the first-order coherence of a semiconductor microcavity laser [J]. Physical Review B. 2008, 78(15): 155319.

【89】Nomura M, Iwamoto S, Kumagai N, et al. Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor [J]. Physical Review B. 2007, 75(19): 195313.

【90】Wang T, Wang X H, Deng Z L, et al. Dynamics of a micro-VCSEL operated in the threshold region under low-level optical feedback [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2019, 25(6): 1-8.

【91】Fox M, Javanainen J. Quantum optics: an introduction [J]. Physics Today. 2007, 60(9): 74-75.

【92】Wiersig J, Gies C, Jahnke F, et al. Direct observation of correlations between individual photon emission events of a microcavity laser [J]. Nature. 2009, 460(7252): 245-249.

【93】Hostein R, Braive R, Le Gratiet L, et al. Demonstration of coherent emission from high-beta photonic crystal nanolasers at room temperature [J]. Optics Letters. 2010, 35(8): 1154-1156.

【94】Chow W W, Jahnke F, Gies C. Emission properties of nanolasers during the transition to lasing [J]. Light: Science & Applications. 2014, 3(8): e201.

【95】Ding Z Y, Fan L, Chen J J. Generation of wide-bandwidth polarized chaotic signals based on VCSEL subject to dual chaotic optical injection [J]. Acta Optica Sinica. 2019, 39(2): 0214002.
丁珠玉, 樊利, 陈建军. 双混沌光注入VCSEL获取宽带宽偏振混沌信号 [J]. 光学学报. 2019, 39(2): 0214002.

【96】Carroll O, Tanguy Y, Houlihan J, et al. Dynamics of self-pulsing semiconductor lasers with optical feedback [J]. Optics Communications. 2004, 239(4/5/6): 429-436.

【97】Takiguchi Y, Liu Y, Ohtsubo J. Low-frequency fluctuation induced by injection-current modulation in semiconductor lasers with optical feedback [J]. Optics Letters. 1998, 23(17): 1369-1371.

【98】Li X F, Pan W, Luo B, et al. Nonlinear dynamic behaviors of an optically injected vertical-cavity surface-emitting laser [J]. Chaos, Solitons & Fractals. 2006, 27(5): 1387-1394.

【99】Wieczorek S, Krauskopf B, Simpson T B, et al. The dynamical complexity of optically injected semiconductor lasers [J]. Physics Reports. 2005, 416(1/2): 1-128.

【100】Abdulrhmann S, Ahmed M, Yamada M. New model of analysis of semiconductor laser dynamics under strong optical feedback in fiber communication systems [J]. Proceedings of SPIE. 2003, 4986: 490-501.

【101】Otsuka K, Ko J Y, Kubota T. Nonstationary chaotic oscillations in lasers with frequency-shifted feedback [J]. Optics Letters. 2001, 26(9): 638-640.

【102】Lin H, Ourari S, Huang T Y, et al. Photonic microwave generation in multimode VCSELs subject to orthogonal optical injection [J]. Journal of the Optical Society of America B. 2017, 34(11): 2381.

【103】Niu S X, Zhang M J, An Y, et al. Frequency-tunable all-optical clock division using semiconductor laser subjected to external optical injection [J]. Acta Physica Sinica. 2008, 57(11): 6998-7004.
牛生晓, 张明江, 安义, 等. 外光注入半导体激光器实现重复速率可调全光时钟分频 [J]. 物理学报. 2008, 57(11): 6998-7004.

【104】Narita Y, Tsuda N, Yamada J. Study on collision avoidance sensor using chaos laser radar [J]. IEEJ Transactions on Electronics, Information and Systems. 2003, 123(12): 2079-2084.

【105】Akizawa Y, Yamazaki T, Uchida A, et al. Fast random number generation with bandwidth-enhanced chaotic semiconductor lasers at 8×50 Gb/s [J]. IEEE Photonics Technology Letters. 2012, 24(12): 1042-1044.

【106】Mu P H, Pan W, Li N Q, et al. Performance of chaos synchronization and security in dual-chaotic optical multiplexing system [J]. Acta Physica Sinica. 2015, 64(12): 124206.

【107】Vatin J, Rontani D, Sciamanna M. Experimental reservoir computing using VCSEL polarization dynamics [J]. Optics Express. 2019, 27(13): 18579-18584.

【108】Hamel P, Haddadi S, Raineri F, et al. Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers [J]. Nature Photonics. 2015, 9(5): 311-315.

【109】Marconi M, Javaloyes J, Raineri F, et al. Asymmetric mode scattering in strongly coupled photonic crystal nanolasers [J]. Optics Letters. 2016, 41(24): 5628-5631.

【110】Pan S H, Gu Q, El Amili A, et al. Dynamic hysteresis in a coherent high-β nanolaser [J]. Optica. 2016, 3(11): 1260-1265.

【111】Jahnke F, Gies C, A?mann M, et al. Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers [J]. Nature Communications. 2016, 7: 11540.

【112】Marconi M, Javaloyes J, Hamel P, et al. Far-from-equilibrium route to superthermal light in bimodal nanolasers [J]. Physical Review X. 2018, 8(1): 011013.

【113】Otto C, Lüdge K, Sch?ll E. Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios [J]. Physica Status Solidi B. 2010, 247(4): 829-845.

【114】Wang T, Deng Z L, Sun J C, et al. Photon statistics and dynamics of nanolasers subject to intensity feedback [J]. Physical Review A. 2020, 101: 023803.

【115】Genov D, Oulton R, Bartal G, et al. Anomalous spectral scaling of light emission rates in low dimensional metallic nanostructures [J]. Physical Review B. 2011, 83: 245312.

【116】Altug H, Englund D, Vuckovic J. Ultrafast photonic crystal nanocavity laser [J]. Nature Physics. 2006, 2(7): 484-488.

【117】Matsuo S, Shinya A, Kakitsuka T, et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted [J]. Nature Photonics. 2010, 4(9): 648-654.

【118】Takiguchi M, Yokoo A, Nozaki K, et al. Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal [J]. ALP Photonics. 2017, 2(4): 046106.

【119】Wu H, Gao Y X, Xu P Z, et al. Plasmonic nanolasers: plasmonic nanolasers: pursuing extreme lasing conditions on nanoscale [J]. Advanced Optical Materials. 2019, 7(17): 1900334.

【120】Hill M T. Electrically pumped metallic and plasmonic nanolasers [J]. Chinese Physics B. 2018, 27(11): 114210.

【121】Hill M T, Marell M, Leong E S, et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides [J]. Optics Express. 2009, 17(13): 11107-11112.

【122】Lu C, Chuang S L, Bimberg D. Metal-cavity surface-emitting nanolasers [J]. IEEE Journal of Quantum Electronics. 2013, 49(1): 114-121.

【123】Kim M K, Lakhani A M, Wu M C. Efficient waveguide-coupling of metal-clad nanolaser cavities [J]. Optics Express. 2011, 19(23): 23504-23512.

【124】Ding K, Ning C Z. Metallic subwavelength-cavity semiconductor nanolasers [J]. Light: Science & Applications. 2012, 1(7): e20.

【125】Heiss D, Dolores-Calzadilla V, Fiore A, et al. Design of a waveguide-coupled nanolaser for photonic integration . [C]∥Advanced Photonics 2013. Washington, D.C.: OSA. 2013, im2a: 3.

【126】Bermúdez-Ure?a E, Tutuncuoglu G, Cuerda J, et al. Plasmonic waveguide-integrated nanowire laser [J]. Nano Letters. 2017, 17(2): 747-754.

引用该论文

Zhang Haoran,Sun Jiacheng,Deng Zhilei,Zou Junlong,Chen Jiawei,He Xi,Wang Tao,Wang Gaofeng. Nanolasers: Progress, New Physics and Technical Challenges[J]. Chinese Journal of Lasers, 2020, 47(7): 0701013

张浩然,孙嘉诚,邓志磊,邹俊龙,陈佳炜,何熙,王涛,王高峰. 纳米激光器进展、新物理问题以及技术挑战[J]. 中国激光, 2020, 47(7): 0701013

被引情况

【1】齐琦,曹欣远,陈明生,刘艺,况晓静,吴先良. 基于压缩感知的腔体器件电磁特性的快速分析. 激光与光电子学进展, 2020, 57(19): 191405--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF