首页 > 论文 > 光学学报 > 40卷 > 12期(pp:1223001--1)

Q值GaN碟状微米谐振腔的光学特性研究

Study of Optical Properties of High-Q GaN Disk-Shaped Microresonant Cavity

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过氢化物气相外延(HVPE)方式在蓝宝石衬底上获得了GaN微米碟,其几何形态为规则的正六边形且表面平整,直径约为27 μm,高度为15 μm。光致发光(PL)实验结果表明,微米碟垂直方向和水平方向的光学谐振模式存在差异,其中水平方向支持回音壁模式(WGM)振荡。在室温条件下采用高能脉冲激光照射微米碟,当激励光功率超过7.8 μW时,PL光谱在波长374 nm附近获得多模式激光信号,其中WGM激光占优势,品质因子可达3742。最后采用COMSOL仿真软件对谐振腔进行光场模拟,并分析了其光学模式特性。

Abstract

In this study, a GaN microdisk is fabricated on a sapphire substrate by hydride vapor phase epitaxy (HVPE). The microdisk has a flat surface and a regular hexagonal shape with a diameter and height of approximately 27 μm and 15 μm, respectively. Photoluminescence (PL) experimental results show that the optical resonance modes of the microdisk are different in the vertical and horizontal orientations, with the latter supporting the whispering gallery mode (WGM) oscillation. When the microdisk is irradiated by a high-energy pulsed laser at room temperature with an excitation light power larger than 7.8 μW, a multimode laser signal near 374 nm wavelength is obtained in the PL spectra, in which the WGM laser is dominant, and the quality factor can reach 3742. Finally, using the COMSOL simulation software, a light field simulation is performed on the resonant cavity to analyze its optical mode characteristics.

中国激光微信矩阵
补充资料

中图分类号:O436

DOI:10.3788/AOS202040.1223001

所属栏目:光学器件

基金项目:国家自然科学基金国家重点项目、国家自然科学基金、国家重点研发计划、国家重大科研仪器设备研制专项;

收稿日期:2020-02-21

修改稿日期:2020-03-23

网络出版日期:2020-06-01

作者单位    点击查看

何耿:苏州大学光电科学与工程学院, 江苏 苏州 215006苏州大学江苏省先进光学制造技术重点实验室, 江苏 苏州 215006苏州大学教育部现代光学技术重点实验室, 江苏 苏州 215006
徐俞:中国科学院苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123
曹冰:苏州大学光电科学与工程学院, 江苏 苏州 215006苏州大学江苏省先进光学制造技术重点实验室, 江苏 苏州 215006苏州大学教育部现代光学技术重点实验室, 江苏 苏州 215006
王钦华:苏州大学光电科学与工程学院, 江苏 苏州 215006苏州大学江苏省先进光学制造技术重点实验室, 江苏 苏州 215006苏州大学教育部现代光学技术重点实验室, 江苏 苏州 215006
徐科:中国科学院苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123

联系人作者:徐俞(yxu2007@sinano.ac.cn); 曹冰(bingcao@suda.edu.cn);

备注:国家自然科学基金国家重点项目、国家自然科学基金、国家重点研发计划、国家重大科研仪器设备研制专项;

【1】Wu J, Walukiewicz W, Yu K M, et al. Superior radiation resistance of In1-xGaxN alloys: full-solar-spectrum photovoltaic material system [J]. Journal of Applied Physics. 2003, 94(10): 6477-6482.

【2】Flack T J, Pushpakaran B N, Bayne S B. GaN technology for power electronic applications: a review [J]. Journal of Electronic Materials. 2016, 45(6): 2673-2682.

【3】Wang Y P, Wang X H, Wang P. Identifying single cell types via whispering gallery mode optical microcavities [J]. Chinese Journal of Lasers. 2020, 47(2): 0207028.
王亚平, 王秀翃, 王璞. 回音壁模式光学微腔识别细胞类型 [J]. 中国激光. 2017, 47(2): 0207028.

【4】Zhu G Y, Li J P, Li J T, et al. Single-mode ultraviolet whispering gallery mode lasing from a floating GaN microdisk [J]. Optics Letters. 2018, 43(4): 647-650.

【5】Gwo S, Shih C K. Semiconductor plasmonic nanolasers: current status and perspectives [J]. Reports on Progress in Physics. 2016, 79(8): 086501.

【6】Wang M H, Zhu G P, Zhu H Q, et al. Morphology-dependent WGMs photoluminescence characteristics from micro/nano-structural ZnO samples [J]. Acta Optica Sinica. 2014, 34(s1): s116001.
王马华, 朱光平, 朱汉清, 等. 纳米氧化锌中回音壁模发光特性的形貌依赖 [J]. 光学学报. 2014, 34(s1): s116001.

【7】Czekalla C, Sturm C, Schmidt-Grund R, et al. Whispering gallery mode lasing in zinc oxide microwires [J]. Applied Physics Letters. 2008, 92(24): 241102.

【8】Shubina T V, Pozina G, Jmerik V N, et al. III-nitride tunable cup-cavities supporting quasi whispering gallery modes from ultraviolet to infrared [J]. Scientific Reports. 2016, 5: 17970.

【9】Yu N S, Dong D P, Qi Y, et al. Synthesis of hexagonal ZnO microdisk on InN substrate by aqueous method and its optical properties [J]. Journal of Materials Science: Materials in Electronics. 2016, 27(10): 10468-10472.

【10】Baek H, Lee C H, Chung K, et al. Epitaxial GaN microdisk lasers grown on graphene microdots [J]. Nano Letters. 2013, 13(6): 2782-2785.

【11】Sellés J, Brimont C, Cassabois G, et al. Deep-UV nitride-on-silicon microdisk lasers [J]. Scientific Reports. 2016, 6: 21650.

【12】Qi L, Xu Y, Li Z Y, et al. Stress analysis of transferable crack-free gallium nitride microrods grown on graphene/SiC substrate [J]. Materials Letters. 2016, 185: 315-318.

【13】Liu H T, Zhang H L, Dong L, et al. Growth of GaN micro/nanolaser arrays by chemical vapor deposition [J]. Nanotechnology. 2016, 27(35): 355201.

【14】Xu Y, Cao B, He S Y, et al. Evolution of threading dislocations in GaN epitaxial laterally overgrown on GaN templates using self-organized graphene as a nano-mask [J]. Applied Physics Letters. 2017, 111(10): 102105.

【15】Bhowmik A K. Polygonal optical cavities [J]. Applied Optics. 2000, 39(18): 3071-3075.

【16】Zhang Y Y, Feng C, Wang T, et al. GaN hemispherical micro-cavities [J]. Applied Physics Letters. 2016, 108(3): 031110.

【17】Wang D Q, Zhu T T, Oliver R A, et al. Ultra-low-threshold InGaN/GaN quantum dot micro-ring lasers [J]. Optics Letters. 2018, 43(4): 799-802.

【18】Yu D S, Chen Y J, Li B J, et al. Stuctural and lasing characteristics of ultrathin hexagonal ZnO nanodisks grown vertically on silicon-on-insulator substrates [J]. Applied Physics Letters. 2007, 91(9): 091116.

【19】Gu H, Ren G Q, Zhou T F, et al. Study of optical properties of bulk GaN crystals grown by HVPE [J]. Journal of Alloys and Compounds. 2016, 674: 218-222.

引用该论文

He Geng,Xu Yu,Cao Bing,Wang Qinhua,Xu Ke. Study of Optical Properties of High-Q GaN Disk-Shaped Microresonant Cavity[J]. Acta Optica Sinica, 2020, 40(12): 1223001

何耿,徐俞,曹冰,王钦华,徐科. 高Q值GaN碟状微米谐振腔的光学特性研究[J]. 光学学报, 2020, 40(12): 1223001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF