首页 > 论文 > 激光与光电子学进展 > 57卷 > 19期(pp:192601--1)

奇点光束模式叠加特性研究

Research on Superposition Characteristics of Singularity Beam Mode

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究了奇点光束的叠加特性,从理论上分析奇点光束叠加后的相位分布和偏振分布,并用实验验证了理论推导的正确性。对同阶非相干涡旋光束叠加后的偏振态进行分析,发现叠加后的光束保持原有的轨道角动量,且光束的偏振态随方位角呈周期性变化,变化周期由涡旋拓扑荷值决定;分析了具有不同偏振拓扑荷值的柱矢量光束叠加后光场偏振态的变化规律。探究了既有相位奇点又有偏振奇点的柱矢量涡旋光束的叠加特性,发现叠加后的光束偏振态随方位角呈周期性变化,变化周期由涡旋拓扑荷值决定,光场各点的偏振态由涡旋拓扑荷值、偏振拓扑荷值及初始相位角共同决定。

Abstract

This paper studies the superposition characteristics of singularity beams, theoretically analyzes the phase distribution and polarization distribution after superposition of singularity beams, and experimentally verifies the correctness of the theoretical derivation. The polarization state of superimposed same-order non-coherent vortex beams is analyzed, and it is found that the superimposed beam maintains the original orbital angular momentum and the polarization state of the beam changes periodically with the azimuth. The change period is determined by the vortex topological charges. The variation of the polarization state of the light field after superposition of the cylindrical vector beams with different polarization topological charges is analyzed. The superposition characteristics of the cylindrical vector vortex beams with both phase singularities and polarization singularities are investigated, and it is found that the polarization state of the superposed beam varies periodically with the azimuth, where the change period is determined by the vortex topological charges. The polarization state of each point of the light field is determined by the vortex topological charge, polarization topological charge, and initial phase angle.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/LOP57.192601

所属栏目:物理光学

基金项目:广东省自然科学基金;

收稿日期:2020-01-03

修改稿日期:2020-01-17

网络出版日期:2020-10-01

作者单位    点击查看

黄慧:华南师范大学广东省微纳光子功能材料与器件重点实验室, 广东 广州 510006
寿倩:华南师范大学广东省微纳光子功能材料与器件重点实验室, 广东 广州 510006
陈志超:华南师范大学广东省微纳光子功能材料与器件重点实验室, 广东 广州 510006

联系人作者:寿倩(laser120@163.com)

备注:广东省自然科学基金;

【1】Dennis M R. O''''Holleran K, Padgett M J. Singular optics: optical vortices and polarization singularities [J]. Progress in Optics. 2009, 53: 293-363.

【2】Willner A E, Wang J, Huang H. A different angle on light communications [J]. Science. 2012, 337(6095): 655-656.Willner A E, Wang J, Huang H. A different angle on light communications [J]. Science. 2012, 337(6095): 655-656.

【3】Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications [J]. Advances in Optics and Photonics. 2009, 1(1): 1-57.Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications [J]. Advances in Optics and Photonics. 2009, 1(1): 1-57.

【4】He H. Friese M E J, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity [J]. Physical Review Letters. 1995, 75(5): 826-829.

【5】Cisowski C M. Correia R R B. Splitting an optical vortex beam to study photonic orbit-orbit interactions [J]. Optics Letters. 2018, 43(3): 499-502.

【6】Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons [J]. Nature. 2001, 412(6844): 313-316.

【7】Voogd R J, Singh M, Pereira S F, et al. The use of orbital angular momentum of light beams for super-high density optical data storage . [C]∥Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing, October 12-14, 2004, Rochester, USA. Washington, DC: OSA. 2004, FTuG14.

【8】Liu Y, Cline D, He P. Vacuum laser acceleration using a radially polarized CO2 laser beam [J]. Nuclear Instruments & Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment. 1999, 424: 296-303.Liu Y, Cline D, He P. Vacuum laser acceleration using a radially polarized CO2 laser beam [J]. Nuclear Instruments & Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment. 1999, 424: 296-303.

【9】Lin J, Zheng W, Wang H F, et al. Effects of scatterers'''' sizes on near-field coherent anti-Stokes Raman scattering under tightly focused radially and linearly polarized light excitation [J]. Optics Express. 2010, 18(10): 10888-10895.

【10】Tian B, Pu J X. Tight focusing of a double-ring-shaped, azimuthally polarized beam [J]. Optics Letters. 2011, 36(11): 2014-2016.

【11】Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers [J]. Science. 2013, 340(6140): 1545-1548.

【12】Milione G. Lavery M P J, Huang H, et al. 4×20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer [J]. Optics Letters. 2015, 40(9): 1980-1983.

【13】Qiao W, Lei T, Wu Z T, et al. Approach to multiplexing fiber communication with cylindrical vector beams [J]. Optics Letters. 2017, 42(13): 2579-2582.

【14】Milione G, Sztul H I, Nolan D, et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light [J]. Physical Review Letters. 2011, 107(5): 053601.Milione G, Sztul H I, Nolan D, et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light [J]. Physical Review Letters. 2011, 107(5): 053601.

【15】Cardano F, Karimi E, Slussarenko S, et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges [J]. Applied Optics. 2012, 51(10): C1-C6.

【16】Yi X N, Liu Y C, Ling X H, et al. Hybrid-order Poincaré sphere [J]. Physical Review A. 2015, 91(2): 023801.

【17】Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser [J]. Nature Photonics. 2016, 10(5): 327-332.

【18】Arlt J, Dholakia K, Allen L, et al. The production of multiringed Laguerre-Gaussian modes by computer-generated holograms [J]. Journal of Modern Optics. 1998, 45(6): 1231-1237.

【19】Gori F, Guattari G, Padovani C. Bessel-Gauss beams [J]. Optics Communications. 1987, 64(6): 491-495.

【20】Moh K J, Yuan X C, Bu J, et al. Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams [J]. Applied Optics. 2007, 46(30): 7544-7551.

【21】Allen L, Padgett M J, Babiker M. IV the orbital angular momentum of light [M]. ∥Wolf E. Progress in optics. Amsterdam: Elsevier. 1999, 291-372.

【22】Galvez E J, Khadka S, Schubert W H, et al. Poincaré-beam patterns produced by nonseparable superpositions of Laguerre-Gauss and polarization modes of light [J]. Applied Optics. 2012, 51(15): 2925-2934.

【23】Zhang D K, Feng X, Cui K Y, et al. Identifying orbital angular momentum of vectorial vortices with Pancharatnam phase and Stokes parameters [J]. Scientific Reports. 2015, 5: 11982.

【24】Milione G, Evans S, Nolan D A, et al. Higher order Pancharatnam-Berry phase and the angular momentum of light [J]. Physical Review Letters. 2012, 108(19): 190401.

引用该论文

Huang Hui,Shou Qian,Chen Zhichao. Research on Superposition Characteristics of Singularity Beam Mode[J]. Laser & Optoelectronics Progress, 2020, 57(19): 192601

黄慧,寿倩,陈志超. 奇点光束模式叠加特性研究[J]. 激光与光电子学进展, 2020, 57(19): 192601

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF