首页 > 论文 > 光学学报 > 40卷 > 1期(pp:0111004--1)

散斑相关成像:从点扩展函数到光场全要素 (特邀综述)

Speckle Correlation Imaging: from Point Spread Functions to Light Field Plenoptics (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

散射光学成像恢复是光学成像领域最重要的研究课题之一。科学家已经提出各种技术实现不同散射环境下的成像恢复。其中,散斑相关性的解卷积技术具有成像质量高、恢复速度快和易于集成等优点。简要综述了散斑相关成像的进展,从光学记忆效应和解卷积原理出发,介绍点扩展函数新物理特性及其在成像恢复中的应用,总结点扩展函数的间接获取方法,最后提出光场全要素(plenoptics)的概念。光场的全要素探索有望在更复杂散射环境中提供更全面的信息,使散射光学成像技术在生物、医疗、海洋、军事和日常生活等场景中更具应用前景。

Abstract

Restoration of scattered optical imaging is among the most important research topics in optical imaging. Various techniques have been proposed for the restoration of imaging in different scattering environments. The deconvolution-based method using speckle correlations is a promising technique achieving high image quality, fast recovery speed, and ease of integration. Herein, we briefly review the current progress of speckle correlation imaging. After discussing the principle of optical memory effect and deconvolution, we introduce new physical characteristics of the point spread functions (PSF) and their applications to image recovery processes, concluding with indirect methods for obtaining the PSF. Finally, a new concept called plenoptics is introduced. Studies on the plenoptics of light fields are expected to provide more information in more complex scattering environments and realize specific applications of scattering optical imaging technique in biology, medicine, ocean, military, and daily life.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/AOS202040.0111004

所属栏目:“计算光学成像"专题

基金项目:国家自然科学基金、汕头大学科研启动基金资助项目;

收稿日期:2019-09-05

修改稿日期:2019-11-06

网络出版日期:2020-01-01

作者单位    点击查看

谢向生:中山大学物理学院, 广东 广州 510275汕头大学理学院物理系, 广东 汕头 515063
刘忆琨:汕头大学理学院物理系, 广东 汕头 515063
梁浩文:汕头大学理学院物理系, 广东 汕头 515063
周建英:汕头大学理学院物理系, 广东 汕头 515063

联系人作者:周建英(stszjy@mail.sysu.edu.cn)

备注:国家自然科学基金、汕头大学科研启动基金资助项目;

【1】Bashkatov A N, Genina E A, Tuchin V V. Optical properties of skin, subcutaneous, and muscle tissues: a review [J]. Journal of Innovative Optical Health Sciences. 2011, 4(1): 9-38.

【2】Wiersma D S. Disordered photonics [J]. Nature Photonics. 2013, 7(3): 188-196.

【3】Mosk A P, Lagendijk A, Lerosey G, et al. Controlling waves in space and time for imaging and focusing in complex media [J]. Nature Photonics. 2012, 6(5): 283-292.

【4】Bifano T. MEMS deformable mirrors [J]. Nature Photonics. 2011, 5(1): 21-23.

【5】Hong P L, Ojambati O S, Lagendijk A, et al. Three-dimensional spatially resolved optical energy density enhanced by wavefront shaping [J]. Optica. 2018, 5(7): 844-849.

【6】He H X, Guan Y F, Zhou J Y. Image restoration through thin turbid layers by correlation with a known object [J]. Optics Express. 2013, 21(10): 12539-12545.

【7】He H X, Wong K S. An improved wavefront determination method based on phase conjugation for imaging through thin scattering medium [J]. Journal of Optics. 2016, 18(8): 085604.

【8】Wang F J, He H X, Zhuang H C, et al. Controlled light field concentration through turbid biological membrane for phototherapy [J]. Biomedical Optics Express. 2015, 6(6): 2237-2245.

【9】Wang K, Sun W Z, Richie C T, et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue [J]. Nature Communications. 2015, 6: 7276.

【10】Huang D, Swanson E, Lin C, et al. Optical coherence tomography [J]. Science. 1991, 254(5035): 1178-1181.

【11】Velten A, Willwacher T, Gupta O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging [J]. Nature Communications. 2012, 3: 745.

【12】Satat G, Heshmat B, Raviv D, et al. All photons imaging through volumetric scattering [J]. Scientific Reports. 2016, 6: 33946.

【13】Yaqoob Z, Psaltis D, Feld M S, et al. Optical phase conjugation for turbidity suppression in biological samples [J]. Nature Photonics. 2008, 2(2): 110-115.

【14】Ma C, Xu X, Liu Y, et al. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media [J]. Nature Photonics. 2014, 8(12): 931-936.

【15】Yang J M, Li J W, He S L, et al. Angular-spectrum modeling of focusing light inside scattering media by optical phase conjugation [J]. Optica. 2019, 6(3): 250-256.

【16】Qiao M, Liu H L, Han S S. Bidirectional image transmission through physically thick scattering media using digital optical phase conjugation [J]. Optics Express. 2018, 26(25): 33066-33079.

【17】Yu Y W, Sun C C, Liu X C, et al. Continuous amplified digital optical phase conjugator for focusing through thick, heavy scattering medium [J]. OSA Continuum. 2019, 2(3): 703-714.

【18】Wang Y M, Judkewitz B. DiMarzio C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light [J]. Nature Communications. 2012, 3: 928.

【19】Zhao L Y, Yang M, Jiang Y X, et al. Optical fluence compensation for handheld photoacoustic probe: an in vivo human study case [J]. Journal of Innovative Optical Health Sciences. 2017, 10(4): 1740002.

【20】Baek Y S, Lee K R, Park Y K. High-resolution holographic microscopy exploiting speckle-correlation scattering matrix [J]. Physical Review Applied. 2018, 10(2): 024053.

【21】Zhuang B, Xu C F, Geng Y, et al. An early study on imaging 3D objects hidden behind highly scattering media: a round-trip optical transmission matrix method [J]. Applied Sciences. 2018, 8(7): 1036.

【22】Popoff S M, Lerosey G, Carminati R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media [J]. Physical Review Letters. 2010, 104(10): 100601.

【23】Popoff S, Lerosey G, Fink M, et al. Image transmission through an opaque material [J]. Nature Communications. 2010, 1: 81.

【24】Li S P, Zhong J G. Dynamic imaging through turbid media based on digital holography [J]. Journal of the Optical Society of America A. 2014, 31(3): 480-486.

【25】Singh A K, Naik D N, Pedrini G, et al. Looking through a diffuser and around an opaque surface: a holographic approach [J]. Optics Express. 2014, 22(7): 7694-7701.

【26】Harm W, Roider C, Jesacher A, et al. Lensless imaging through thin diffusive media [J]. Optics Express. 2014, 22(18): 22146-22156.

【27】Freund I. Looking through walls and around corners [J]. Physica A: Statistical Mechanics and its Applications. 1990, 168(1): 49-65.

【28】Newman J A, Webb K J. Imaging optical fields through heavily scattering media [J]. Physical Review Letters. 2014, 113(26): 263903.

【29】Stern G, Katz O. Noninvasive focusing through scattering layers using speckle correlations [J]. Optics Letters. 2019, 44(1): 143-146.

【30】Li Y Z, Xue Y J, Tian L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media [J]. Optica. 2018, 5(10): 1181-1190.

【31】Cua M, Zhou E H, Yang C. Imaging moving targets through scattering media [J]. Optics Express. 2017, 25(4): 3935-3945.

【32】Wu T F, Katz O, Shao X P, et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis [J]. Optics Letters. 2016, 41(21): 5003-5006.

【33】Shi Y Y, Liu Y W, Wang J M, et al. Non-invasive depth-resolved imaging through scattering layers via speckle correlations and parallax [J]. Applied Physics Letters. 2017, 110(23): 231101.

【34】Edrei E, Scarcelli G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect [J]. Optica. 2016, 3(1): 71-74.

【35】Takasaki K T, Fleischer J W. Phase-space measurement for depth-resolved memory-effect imaging [J]. Optics Express. 2014, 22(25): 31426-31433.

【36】Bertolotti J, van Putten E G, Blum C, et al. Non-invasive imaging through opaque scattering layers [J]. Nature. 2012, 491(7423): 232-234.

【37】Katz O, Heidmann P, Fink M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations [J]. Nature Photonics. 2014, 8(10): 784-790.

【38】Antipa N, Kuo G, Heckel R, et al. DiffuserCam: lensless single-exposure 3D imaging [J]. Optica. 2018, 5(1): 1-9.

【39】Valent E, Silberberg Y. Scatterer recognition via analysis of speckle patterns [J]. Optica. 2018, 5(2): 204-207.

【40】Saunders C, Murray-Bruce J, Goyal V K. Computational periscopy with an ordinary digital camera [J]. Nature. 2019, 565(7740): 472-475.

【41】Idell P S, Fienup J R, Goodman R S. Image synthesis from nonimaged laser-speckle patterns [J]. Optics Letters. 1987, 12(11): 858-860.

【42】Voelz D G, Gonglewski J D, Idell P S. Image synthesis from nonimaged laser-speckle patterns: comparison of theory, computer simulation, and laboratory results [J]. Applied Optics. 1991, 30(23): 3333-3344.

【43】Zhuang H C, He H X, Xie X S, et al. High speed color imaging through scattering media with a large field of view [J]. Scientific Reports. 2016, 6: 32696.

【44】Edrei E, Scarcelli G. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media [J]. Scientific Reports. 2016, 6: 33558.

【45】Feng S C, Kane C, Lee P A, et al. Correlations and fluctuations of coherent wave transmission through disordered media [J]. Physical Review Letters. 1988, 61(7): 834-837.

【46】Freund I, Rosenbluh M, Feng S C. Memory effects in propagation of optical waves through disordered media [J]. Physical Review Letters. 1988, 61(20): 2328-2331.

【47】He H X. Imaging restoration from the scattering light by wavefront shaping technique Guangzhou: Sun Yat-sen [D]. University. 2014, 30-31.
和河向. 波前调制技术在散射光成像恢复中的应用 [D]. 广州: 中山大学. 2014, 30-31.

【48】Judkewitz B, Horstmeyer R, Vellekoop I M, et al. Translation correlations in anisotropically scattering media [J]. Nature Physics. 2015, 11(8): 684-689.

【49】Bertolotti J. Unravelling the tangle [J]. Nature Physics. 2015, 11(8): 622-623.

【50】Richardson W H. Bayesian-based iterative method of image restoration [J]. Journal of the Optical Society of America. 1972, 62(1): 55-59.

【51】Lucy L B. An iterative technique for the rectification of observed distributions [J]. The Astronomical Journal. 1974, 79(6): 745-754.

【52】Fan J Q, Koo J Y. Wavelet deconvolution [J]. IEEE Transactions on Information Theory. 2002, 48(3): 734-747.

【53】Neelamani R, Choi H, Baraniuk R. ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems [J]. IEEE Transactions on Signal Processing. 2004, 52(2): 418-433.

【54】Xie X S, Chen Y Z, Yang K, et al. Harnessing the point-spread function for high-resolution far-field optical microscopy [J]. Physical Review Letters. 2014, 113(26): 263901.

【55】Li L, Li Q, Sun S, et al. Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function [J]. Optics Letters. 2018, 43(8): 1670-1673.

【56】Tang D L, Sahoo S K, Tran V, et al. Single-shot large field of view imaging with scattering media by spatial demultiplexing [J]. Applied Optics. 2018, 57(26): 7533-7538.

【57】Liao M H, Lu D J, Pedrini G, et al. Extending the depth-of-field of imaging systems with a scattering diffuser [J]. Scientific Reports. 2019, 9: 7165.

【58】Xie X S, Zhuang H C, He H X, et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation [J]. Scientific Reports. 2018, 8: 4585.

【59】Goodman J W. Speckle phenomena in optics: theory and applications [M]. USA: Roberts and Company Publishers. 2007, 75-77.

【60】Chen Q Q, He H X, Xu X Q, et al. Memory effect based filter to improve imaging quality through scattering layers [J]. IEEE Photonics Journal. 2018, 10(5): 6901010.

【61】Xu X Q, Xie X S, He H X, et al. Imaging objects through scattering layers and around corners by retrieval of the scattered point spread function [J]. Optics Express. 2017, 25(26): 32829-32840.

【62】Yang W Q, Li G W, Guohai S T. Imaging through scattering media with the auxiliary of a known reference object [J]. Scientific Reports. 2018, 8: 9614.

【63】Yang X J, Xiang L Z. Photoacoustic imaging of prostate cancer [J]. Journal of Innovative Optical Health Sciences. 2017, 10(4): 1730008.

【64】Wróbel M S, Popov A P, Bykov A V, et al. Multi-layered tissue head phantoms for noninvasive optical diagnostics [J]. Journal of Innovative Optical Health Sciences. 2015, 8(3): 1541005.

【65】Crosignani V, Jahid S, Dvornikov A, et al. Deep tissue imaging by enhanced photon collection [J]. Journal of Innovative Optical Health Sciences. 2014, 7(5): 1450034.

【66】Wang Z P, Jin X, Dai Q H. Non-invasive imaging through strongly scattering media based on speckle pattern estimation and deconvolution [J]. Scientific Reports. 2018, 8: 9088.

【67】Wu T F, Dong J, Shao X P, et al. Imaging through a thin scattering layer and jointly retrieving the point-spread-function using phase-diversity [J]. Optics Express. 2017, 25(22): 27182-27194.

【68】Han P L, Liu F, Yang K, et al. Active underwater descattering and image recovery [J]. Applied Optics. 2017, 56(23): 6631-6638.

【69】Li X H, Greenberg J A, Gehm M E. Single-shot multispectral imaging through a thin scatterer [J]. Optica. 2019, 6(7): 864-871.

【70】Sahoo S K, Tang D L, Dang C. Single-shot multispectral imaging with a monochromatic camera [J]. Optica. 2017, 4(10): 1209-1213.

【71】Xu X Q, Xie X S, Thendiyammal A, et al. Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference [J]. Optics Express. 2018, 26(12): 15073-15083.

【72】Liang J B, Cai J F, Xie J P, et al. Depth-resolved and auto-focus imaging through scattering layer with wavelength compensation [J]. Journal of the Optical Society of America A. 2019, 36(6): 944-949.

【73】Xie J P, Xie X S, Gao Y M, et al. Depth detection capability and ultra-large depth of field in imaging through a thin scattering layer [J]. Journal of Optics. 2019, 21(8): 085606.

【74】He H X, Xie X S, Liu Y K, et al. Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method [J]. Journal of Innovative Optical Health Sciences. 2019, 12(4): 1930005.

引用该论文

Xie Xiangsheng,Liu Yikun,Liang Haowen,Zhou Jianying. Speckle Correlation Imaging: from Point Spread Functions to Light Field Plenoptics[J]. Acta Optica Sinica, 2020, 40(1): 0111004

谢向生,刘忆琨,梁浩文,周建英. 散斑相关成像:从点扩展函数到光场全要素[J]. 光学学报, 2020, 40(1): 0111004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF