首页 > 论文 > 光学学报 > 41卷 > 1期(pp:0127001--1)

高精细度法布里-珀罗光学微腔及其在强耦合腔量子电动力学中的应用

High-Finesse Micro-Optical Fabry-Perot Cavity and Its Applications in Strongly Coupled Cavity Quantum Electrodynamics

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

强耦合腔量子电动力学(cavity quantum electrodynamics, 简称C-QED)系统主要用于研究受限于空间中的光与物质相互作用的物理现象。该系统为深入认识原子与光子间相互作用的动力学行为提供了有力工具。高精细度法布里-珀罗光学微腔(Fabry-Perot cavity, F-P腔)作为强耦合C-QED系统的核心部分,是实现光与物质间的强耦合、探索极端条件下光与物质间的相互作用、精确操控原子以及灵敏探测相关过程等的基础。简要介绍了高精细度F-P腔及其在强耦合C-QED中的应用,包括研究背景、现状及发展动态,并就未来的发展和应用进行了展望。

Abstract

The main goal of strongly coupled cavity quantum electrodynamics (C-QED) is to study physical phenomena occurring during the interaction between light field and matter confined in a finite space. The C-QED system provides an effective tool for the deep understanding of the dynamic behaviors of atoms interacting with photons. As the core of the C-QED system, the high-finesse Fabry-Perot (F-P) optical cavity plays the basic roles in the realization of strong coupling between light and matter, in the exploring of the interaction between light and matter under the extreme conditions, in the precision control of atoms, and in the sensitive detection of the related processes. We briefly introduce the high-finesse F-P cavity and its applications in strongly coupled C-QED system, including its research background, status and development trend. In addition, the future development and potential applications are prospected.

广告组4 - 量子光学(超导单光子,符合计数器)
补充资料

中图分类号:O4-1

DOI:10.3788/AOS202141.0127001

所属栏目:量子光学

基金项目:国家重点研发计划、国家自然科学基金、山西省“1331工程”重点学科建设计划(11634008,11674203,11574187,11974223,11974225)

收稿日期:2020-08-20

修改稿日期:2020-09-15

网络出版日期:2021-01-01

作者单位    点击查看

张天才:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
毋伟:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
杨鹏飞:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006山西大学大数据科学与产业研究院, 山西 太原 030006
李刚:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006
张鹏飞:山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006山西大学极端光学协同创新中心, 山西 太原 030006

联系人作者:张天才(tczhang@sxu.edu.cn); 李刚(gangli@sxu.edu.cn);

【1】Hernández G. Fabry-Perot interferometers[M]. New York: , 1988.

【2】Day T, Gustafson E K, Byer R L. Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd∶YAG lasers locked to a Fabry-Perot interferometer [J]. IEEE Journal of Quantum Electronics. 1992, 28(4): 1106-1117.Day T, Gustafson E K, Byer R L. Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd∶YAG lasers locked to a Fabry-Perot interferometer [J]. IEEE Journal of Quantum Electronics. 1992, 28(4): 1106-1117.

【3】Wei T, Han Y K, Tsai H L, et al. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser [J]. Optics Letters. 2008, 33(6): 536-538.

【4】Wei F, Yang F, Zhang X, et al. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity [J]. Optics Express. 2016, 24(15): 17406-17415.

【5】Guo Y S, Jiang S, Chen X, et al. Using a Fabry-Perot cavity to augment the enhancement factor for surface-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy [J]. The Journal of Physical Chemistry C. 2018, 122(26): 14865-14871.

【6】Drouin B J, Tang A, Schlecht E, et al. A CMOS millimeter-wave transceiver embedded in a semi-confocal Fabry-Perot cavity for molecular spectroscopy [J]. The Journal of Chemical Physics. 2016, 145(7): 074201.Drouin B J, Tang A, Schlecht E, et al. A CMOS millimeter-wave transceiver embedded in a semi-confocal Fabry-Perot cavity for molecular spectroscopy [J]. The Journal of Chemical Physics. 2016, 145(7): 074201.

【7】Monteiro C, Silva S, Fraz?o O. Hollow microsphere Fabry-Perot cavity for sensing applications [J]. IEEE Photonics Technology Letters. 2017, 29(15): 1229-1232.Monteiro C, Silva S, Fraz?o O. Hollow microsphere Fabry-Perot cavity for sensing applications [J]. IEEE Photonics Technology Letters. 2017, 29(15): 1229-1232.

【8】Bitarafan M H. DeCorby R G. On-chip high-finesse Fabry-Perot microcavities for optical sensing and quantum information [J]. Sensors. 2017, 17(8): 1748.

【9】Jewell S A, Hendry E, Isaac T H, et al. Tuneable Fabry-Perot etalon for terahertz radiation [J]. New Journal of Physics. 2008, 10(3): 033012.Jewell S A, Hendry E, Isaac T H, et al. Tuneable Fabry-Perot etalon for terahertz radiation [J]. New Journal of Physics. 2008, 10(3): 033012.

【10】Jewell J L, Rushford M C, Gibbs H M. Use of a single nonlinear Fabry-Perot etalon as optical logic gates [J]. Applied Physics Letters. 1984, 44(2): 172-174.Jewell J L, Rushford M C, Gibbs H M. Use of a single nonlinear Fabry-Perot etalon as optical logic gates [J]. Applied Physics Letters. 1984, 44(2): 172-174.

【11】Guérin N, Enoch S, Tayeb G, et al. A metallic Fabry-Perot directive antenna [J]. IEEE Transactions on Antennas and Propagation. 2006, 54(1): 220-224.Guérin N, Enoch S, Tayeb G, et al. A metallic Fabry-Perot directive antenna [J]. IEEE Transactions on Antennas and Propagation. 2006, 54(1): 220-224.

【12】Ju J, Choi J. Broadband high-gain Fabry-Perot cavity antenna with back radiation reduction [J]. Microwave and Optical Technology Letters. 2013, 55(5): 975-978.Ju J, Choi J. Broadband high-gain Fabry-Perot cavity antenna with back radiation reduction [J]. Microwave and Optical Technology Letters. 2013, 55(5): 975-978.

【13】Corbitt T, Ottaway D, Innerhofer E, et al. Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity [J]. Physical Review A. 2006, 74(2): 021802.Corbitt T, Ottaway D, Innerhofer E, et al. Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity [J]. Physical Review A. 2006, 74(2): 021802.

【14】Lawall J R. Fabry-Perot metrology for displacements up to 50 mm [J]. Journal of the Optical Society of America A. 2005, 22(12): 2786-2798.

【15】Jones R J, Diels J C. Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis [J]. Physical Review Letters. 2001, 86(15): 3288.Jones R J, Diels J C. Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis [J]. Physical Review Letters. 2001, 86(15): 3288.

【16】Aoki T, Dayan B, Wilcut E, et al. Observation of strong coupling between one atom and a monolithic microresonator [J]. Nature. 2006, 443(7112): 671-674.Aoki T, Dayan B, Wilcut E, et al. Observation of strong coupling between one atom and a monolithic microresonator [J]. Nature. 2006, 443(7112): 671-674.

【17】Gr?blacher S, Hammerer K, Vanner M R, et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field [J]. Nature. 2009, 460(7256): 724-727.Gr?blacher S, Hammerer K, Vanner M R, et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field [J]. Nature. 2009, 460(7256): 724-727.

【18】Yokoyama H. Physics and device applications of optical microcavities [J]. Science. 1992, 256(5053): 66-70.Yokoyama H. Physics and device applications of optical microcavities [J]. Science. 1992, 256(5053): 66-70.

【19】Raimond J M, Haroche S. Exploring the quantum: atoms, cavities, and photons[M]. New York: , 2006, 231-278.

【20】van Enk S J, Cirac J I, Zoller P. Photonic channels for quantum communication [J]. Science. 1998, 279(5348): 205-208.van Enk S J, Cirac J I, Zoller P. Photonic channels for quantum communication [J]. Science. 1998, 279(5348): 205-208.

【21】Mabuchi H, Doherty A C. Cavity quantum electrodynamics: coherence in context [J]. Science. 2002, 298(5597): 1372-1377.Mabuchi H, Doherty A C. Cavity quantum electrodynamics: coherence in context [J]. Science. 2002, 298(5597): 1372-1377.

【22】Kimble H J. The quantum internet [J]. Nature. 2008, 453(7198): 1023-1030.

【23】Thompson R J, Rempe G, Kimble H J, et al. Observation of normal-mode splitting for an atom in an optical cavity [J]. Physical Review Letters. 1992, 68(8): 1132-1135.

【24】Mckeever J, Boca A, Boozer A D, et al. Deterministic generation of single photons from one atom trapped in a cavity [J]. Science. 2004, 303(5666): 1992-1994.

【25】Brennecke F, Donner T, Ritter S, et al. Cavity QED with a Bose-Einstein condensate [J]. Nature. 2007, 450(7167): 268-271.Brennecke F, Donner T, Ritter S, et al. Cavity QED with a Bose-Einstein condensate [J]. Nature. 2007, 450(7167): 268-271.

【26】Zoller P, Beth T, Binosi D, et al. Quantum information processing and communication: strategic report on current status, visions and goals for research in Europe [J]. European Physical Journal D. 2005, 36(2): 203-228.Zoller P, Beth T, Binosi D, et al. Quantum information processing and communication: strategic report on current status, visions and goals for research in Europe [J]. European Physical Journal D. 2005, 36(2): 203-228.

【27】Weber B, Specht H P, Müller T, et al. Photon-photon entanglement with a single trapped atom [J]. Physical Review Letters. 2009, 102(3): 030501.

【28】Rauschenbeutel A, Nogues G, Osnaghi S, et al. Coherent operation of a tunable quantum phase gate in cavity QED [J]. Physical Review Letters. 1999, 83(24): 5166-5169.Rauschenbeutel A, Nogues G, Osnaghi S, et al. Coherent operation of a tunable quantum phase gate in cavity QED [J]. Physical Review Letters. 1999, 83(24): 5166-5169.

【29】Banaszek K, Demkowicz-Dobrzański R, Walmsley I A. Quantum states made to measure [J]. Nature Photonics. 2009, 3(12): 673-676.Banaszek K, Demkowicz-Dobrzański R, Walmsley I A. Quantum states made to measure [J]. Nature Photonics. 2009, 3(12): 673-676.

【30】Chen Z L, Bohnet J G, Sankar S R, et al. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting [J]. Physical Review Letters. 2011, 106(13): 133601.

【31】Rempe G, Thompson R J, Kimble H J, et al. Measurement of ultralow losses in an optical interferometer [J]. Optics Letters. 1992, 17(5): 363-365.

【32】Hood C J. The atom-cavity microscope: single atoms bound in orbit by single photons [J]. Science. 2000, 287(5457): 1447-1453.Hood C J. The atom-cavity microscope: single atoms bound in orbit by single photons [J]. Science. 2000, 287(5457): 1447-1453.

【33】McKeever J, Boca A, Boozer A D, et al. Experimental realization of a one-atom laser in the regime of strong coupling [J]. Nature. 2003, 425(6955): 268-271.

【34】Keller M, Lange B, Hayasaka K, et al. Continuous generation of single photons with controlled waveform in an ion-trap cavity system [J]. Nature. 2004, 431(7012): 1075-1078.Keller M, Lange B, Hayasaka K, et al. Continuous generation of single photons with controlled waveform in an ion-trap cavity system [J]. Nature. 2004, 431(7012): 1075-1078.

【35】Pinkse P W, Fischer T, Maunz P, et al. Trapping an atom with single photons [J]. Nature. 2000, 404(6776): 365-368.Pinkse P W, Fischer T, Maunz P, et al. Trapping an atom with single photons [J]. Nature. 2000, 404(6776): 365-368.

【36】Maunz P, Puppe T, Schuster I, et al. Cavity cooling of a single atom [J]. Nature. 2004, 428(6978): 50-52.

【37】Schuster I, Kubanek A, Fuhrmanek A, et al. Nonlinear spectroscopy of photons bound to one atom [J]. Nature Physics. 2008, 4(5): 382-385.Schuster I, Kubanek A, Fuhrmanek A, et al. Nonlinear spectroscopy of photons bound to one atom [J]. Nature Physics. 2008, 4(5): 382-385.

【38】Kubanek A, Koch M, Sames C, et al. Photon-by-photon feedback control of a single-atom trajectory [J]. Nature. 2009, 462(7275): 898-901.

【39】Ourjoumtsev A, Kubanek A, Koch M, et al. Observation of squeezed light from one atom excited with two photons [J]. Nature. 2011, 474(7353): 623-626.

【40】Hamsen C, Tolazzi K N, Wilk T, et al. Strong coupling between photons of two light fields mediated by one atom [J]. Nature Physics. 2018, 14(9): 885-889.

【41】Terraciano M L, Olson Knell R, Norris D G, et al. Photon burst detection of single atoms in an optical cavity [J]. Nature Physics. 2009, 5(7): 480-484.Terraciano M L, Olson Knell R, Norris D G, et al. Photon burst detection of single atoms in an optical cavity [J]. Nature Physics. 2009, 5(7): 480-484.

【42】Baumann K, Guerlin C, Brennecke F, et al. Dicke quantum phase transition with a superfluid gas in an optical cavity [J]. Nature. 2010, 464(7293): 1301-1306.Baumann K, Guerlin C, Brennecke F, et al. Dicke quantum phase transition with a superfluid gas in an optical cavity [J]. Nature. 2010, 464(7293): 1301-1306.

【43】Purdy T P, Brooks D W, Botter T, et al. Tunable cavity optomechanics with ultracold atoms [J]. Physical Review Letters. 2010, 105(13): 133602.Purdy T P, Brooks D W, Botter T, et al. Tunable cavity optomechanics with ultracold atoms [J]. Physical Review Letters. 2010, 105(13): 133602.

【44】Stute A, Casabone B, Schindler P, et al. Tunable ion-photon entanglement in an optical cavity [J]. Nature. 2012, 485(7399): 482-485.

【45】Takahashi H, Kassa E, Christoforou C, et al. Strong coupling of a single ion to an optical cavity [J]. Physical Review Letters. 2020, 124(1): 013602.Takahashi H, Kassa E, Christoforou C, et al. Strong coupling of a single ion to an optical cavity [J]. Physical Review Letters. 2020, 124(1): 013602.

【46】Tong L M, Zi F, Guo X, et al. Optical microfibers and nanofibers: a tutorial [J]. Optics Communications. 2012, 285(23): 4641-4647.

【47】Tong L M, Gattass R R, Ashcom J B, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding [J]. Nature. 2003, 426(6968): 816-819.

【48】Zhang L, Lou J Y, Tong L M. Micro/nanofiber optical sensors [J]. Photonic Sensors. 2011, 1(1): 31-42.

【49】Cui J M, Zhou K, Zhao M S, et al. Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings [J]. Applied Physics Letters. 2018, 112(17): 171105.

【50】Zhang T T, Zhou C H, Wang W J, et al. Generation of low-threshold optofluidic lasers in a stable Fabry-Pérot microcavity [J]. Optics & Laser Technology. 2017, 91: 108-111.Zhang T T, Zhou C H, Wang W J, et al. Generation of low-threshold optofluidic lasers in a stable Fabry-Pérot microcavity [J]. Optics & Laser Technology. 2017, 91: 108-111.

【51】Dong C H, Shen Z, Zou C L, et al. Brillouin-scattering-induced transparency and non-reciprocal light storage [J]. Nature Communications. 2015, 6: 6193.

【52】Shen Z, Zhang Y L, Chen Y, et al. Experimental realization of optomechanically induced non-reciprocity [J]. Nature Photonics. 2016, 10(10): 657-661.

【53】Shen Z, Zhang Y L, Chen Y, et al. Reconfigurable optomechanical circulator and directional amplifier [J]. Nature Communications. 2018, 9: 1797.Shen Z, Zhang Y L, Chen Y, et al. Reconfigurable optomechanical circulator and directional amplifier [J]. Nature Communications. 2018, 9: 1797.

【54】Wu X W, Zou C L, Wei W, et al. Photoluminescence from site-selected coupling between quantum dots and microtoroid cavities [J]. Chinese Optics Letters. 2010, 8(7): 709-712.

【55】Chang L, Jiang X S, Hua S Y, et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators [J]. Nature Photonics. 2014, 8(7): 524-529.Chang L, Jiang X S, Hua S Y, et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators [J]. Nature Photonics. 2014, 8(7): 524-529.

【56】Tang S J, Li B B, Xiao Y F. Optical sensing with whispering-gallery microcavities [J]. Physics. 2019, 48(3): 137-147.
唐水晶, 李贝贝, 肖云峰. 回音壁模式光学微腔传感 [J]. 物理. 2019, 48(3): 137-147.
Tang S J, Li B B, Xiao Y F. Optical sensing with whispering-gallery microcavities [J]. Physics. 2019, 48(3): 137-147.
唐水晶, 李贝贝, 肖云峰. 回音壁模式光学微腔传感 [J]. 物理. 2019, 48(3): 137-147.

【57】Peng B, ?zdemir ? K, Lei F, et al. Parity-time-symmetric whispering-gallery microcavities [J]. Nature Physics. 2014, 10(5): 394-398.Peng B, ?zdemir ? K, Lei F, et al. Parity-time-symmetric whispering-gallery microcavities [J]. Nature Physics. 2014, 10(5): 394-398.

【58】Lin J T, Yao N, Hao Z Z, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator [J]. Physical Review Letters. 2019, 122(17): 173903.

【59】Kong Y F, Bo F, Wang W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices [J]. Advanced Materials. 2020, 32(3): 1806452.Kong Y F, Bo F, Wang W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices [J]. Advanced Materials. 2020, 32(3): 1806452.

【60】Yang Y D, Tang M, Wang F L, et al. Whispering-gallery mode hexagonal micro-/nanocavity lasers [J]. Photonics Research. 2019, 7(5): 594-607.

【61】Chen W, Zhang S P, Deng Q, et al. Probing of sub-picometer vertical differential resolutions using cavity plasmons [J]. Nature Communications. 2018, 9: 801.Chen W, Zhang S P, Deng Q, et al. Probing of sub-picometer vertical differential resolutions using cavity plasmons [J]. Nature Communications. 2018, 9: 801.

【62】Li L P, Liu T, Li G, et al. Measurement of ultra-low losses in optical supercavity [J]. Acta Physica Sinica. 2004, 53(5): 1401-1405.
李利平, 刘涛, 李刚, 等. 超高精细度光学腔中低损耗的测量 [J]. 物理学报. 2004, 53(5): 1401-1405.

【63】Li G, Zhang Y, Li Y, et al. Precision measurement of ultralow losses of an asymmetric optical microcavity [J]. Applied Optics. 2006, 45(29): 7628-7631.

【64】Zhang P F, Guo Y Q, Li Z H, et al. Elimination of the degenerate trajectory of a single atom strongly coupled to a tilted TEM10 cavity mode [J]. Physical Review A. 2011, 83(3): 031804.

【65】Wen R J, Du J J, Li W F, et al. Construction of a strongly coupled cavity quantum electrodynamics system with easy accessibility of single or multiple intra-cavity atoms [J]. Acta Physica Sinica. 2014, 63(24): 244203.
文瑞娟, 杜金锦, 李文芳, 等. 内腔多原子直接俘获的强耦合腔量子力学系统的构建 [J]. 物理学报. 2014, 63(24): 244203.
Wen R J, Du J J, Li W F, et al. Construction of a strongly coupled cavity quantum electrodynamics system with easy accessibility of single or multiple intra-cavity atoms [J]. Acta Physica Sinica. 2014, 63(24): 244203.
文瑞娟, 杜金锦, 李文芳, 等. 内腔多原子直接俘获的强耦合腔量子力学系统的构建 [J]. 物理学报. 2014, 63(24): 244203.

【66】Yang P F, He H, Wang Z H, et al. Cavity enhanced measurement of trap frequency in an optical dipole trap [J]. Chinese Physics B. 2019, 28(4): 043701.

【67】Yang P F, Xia X W, He H, et al. Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity [J]. Physical Review Letters. 2019, 123(23): 233604.

【68】Zhang P F, Zhang Y C, Li G, et al. Sensitive detection of individual neutral atoms in a strong coupling cavity QED system [J]. Chinese Physics Letters. 2011, 28(4): 044203.Zhang P F, Zhang Y C, Li G, et al. Sensitive detection of individual neutral atoms in a strong coupling cavity QED system [J]. Chinese Physics Letters. 2011, 28(4): 044203.

【69】Du J J, Li W F, Wen R J, et al. Precision measurement of single atoms strongly coupled to the higher-order transverse modes of a high-finesse optical cavity [J]. Applied Physics Letters. 2013, 103(8): 083117.

【70】Li Z G, Zhang Y C, Li G, et al. -12-23 [P]. accurately measuring ultra-high reflectivity lens: CN100573082C. 2009.
李志刚, 张玉驰, 李刚, 等. -12-23 [P]. . 快速精确测定超高反射率镜片的方法: CN100573082C. 2009.

【71】Hood C J, Kimble H J, Ye J. Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity [J]. Physical Review A. 2001, 64(3): 033804.Hood C J, Kimble H J, Ye J. Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity [J]. Physical Review A. 2001, 64(3): 033804.

【72】Zhang P F, Li G. -11-21 [P]. Zhang T C. Method for manufacturing ultra-stable ultra-high-fineness micro-optical cavity: CN102427200A. 2012.
张鹏飞, 李刚, 张天才. -11-21 [P]. . 一种超稳定超高精细度微光学腔的制作方法:CN102427200A. 2012.

【73】Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator [J]. Applied Physics B. 1983, 31(2): 97-105.Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator [J]. Applied Physics B. 1983, 31(2): 97-105.

【74】Lindsay B G, Smith K A, Dunning F B. Control of long-term output frequency drift in commercial dye lasers [J]. Review of Scientific Instruments. 1991, 62(6): 1656-1657.Lindsay B G, Smith K A, Dunning F B. Control of long-term output frequency drift in commercial dye lasers [J]. Review of Scientific Instruments. 1991, 62(6): 1656-1657.

【75】Du J J, Li G, Li W F, locking method:CN102520516B[P], et al. -06-26 . 2013.
杜金锦, 李刚, 李文芳, 等. -06-26 [P]. . 一种高精细度微光学腔的锁定装置及其锁定方法:CN102520516B. 2013.

【76】Li G, Zhang P F. -06-14 [P]. Zhang T C. An optical reference cavity with self-compensation for temperature drift: CN109888609. 2019.
李刚, 张鹏飞, 张天才. -06-14 [P]. . 一种温漂自补偿的光学参考腔:CN109888609. 2019.

【77】Zhang P F, Li G, Zhang Y C, et al. Light-induced atom desorption for cesium loading of a magneto-optical trap: analysis and experimental investigations [J]. Physical Review A. 2009, 80(5): 053420.Zhang P F, Li G, Zhang Y C, et al. Light-induced atom desorption for cesium loading of a magneto-optical trap: analysis and experimental investigations [J]. Physical Review A. 2009, 80(5): 053420.

【78】Phillips W D. Nobel Lecture: laser cooling and trapping of neutral atoms [J]. Reviews of Modern Physics. 1998, 70(3): 721.

【79】Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models [J]. Journal of the Optical Society of America B. 1989, 6(11): 2023-2045.

【80】Li G, Li L P, Du Z J, et al. Ultra-low mean-photon-number measurement with balanced optical heterodyne detection [J]. Chinese Physics Letters. 2004, 21(4): 671-674.

【81】Li W F, Du J J, Wen R J, et al. Temperature measurement of cold atoms using single-atom transits and Monte Carlo simulation in a strongly coupled atom-cavity system [J]. Applied Physics Letters. 2014, 104(11): 113102.Li W F, Du J J, Wen R J, et al. Temperature measurement of cold atoms using single-atom transits and Monte Carlo simulation in a strongly coupled atom-cavity system [J]. Applied Physics Letters. 2014, 104(11): 113102.

【82】Du J J, Li W F, Wen R J, et al. Experimental investigation of the statistical distribution of single atoms in cavity quantum electrodynamics [J]. Laser Physics Letters. 2015, 12(6): 065501.Du J J, Li W F, Wen R J, et al. Experimental investigation of the statistical distribution of single atoms in cavity quantum electrodynamics [J]. Laser Physics Letters. 2015, 12(6): 065501.

【83】Yang P F, Li M, Han X, et al. -11-23)[2020-03-15] . 2019, org/abs/1911: 10300.Yang P F, Li M, Han X, et al. -11-23)[2020-03-15] . 2019, org/abs/1911: 10300.

【84】Wang Z H, Tian Y L, Yang C, et al. Experimental test of Bohr''s complementarity principle with single neutral atoms [J]. Physical Review A. 2016, 94(6): 062124.Wang Z H, Tian Y L, Yang C, et al. Experimental test of Bohr''s complementarity principle with single neutral atoms [J]. Physical Review A. 2016, 94(6): 062124.

【85】Tian Y L, Wang Z H, Zhang P F, et al. Measurement of complete and continuous Wigner functions for discrete atomic systems [J]. Physical Review A. 2018, 97(1): 013840.Tian Y L, Wang Z H, Zhang P F, et al. Measurement of complete and continuous Wigner functions for discrete atomic systems [J]. Physical Review A. 2018, 97(1): 013840.

【86】Li G, Tian Y L, Wu W, et al. Triply magic conditions for microwave transition of optically trapped alkali-metal atoms [J]. Physical Review Letters. 2019, 123(25): 253602.Li G, Tian Y L, Wu W, et al. Triply magic conditions for microwave transition of optically trapped alkali-metal atoms [J]. Physical Review Letters. 2019, 123(25): 253602.

【87】N?lleke C, Neuzner A, Reiserer A, et al. Efficient teleportation between remote single-atom quantum memories [J]. Physical Review Letters. 2013, 110(14): 140403.N?lleke C, Neuzner A, Reiserer A, et al. Efficient teleportation between remote single-atom quantum memories [J]. Physical Review Letters. 2013, 110(14): 140403.

【88】Kato S, Német N, Senga K, et al. Observation of dressed states of distant atoms with delocalized photons in coupled-cavities quantum electrodynamics [J]. Nature Communications. 2019, 10: 1160.

【89】Okada M, Serikawa T, Dannatt J, et al. Extending the piezoelectric transducer bandwidth of an optical interferometer by suppressing resonance using a high dimensional IIR filter implemented on an FPGA [J]. Review of Scientific Instruments. 2020, 91(5): 055102.

【90】Guo Y Q, Wang L J, Wang Y, et al. High-order photon correlations through double Hanbury Brown-Twiss measurements [J]. Journal of Optics. 2020, 22(9): 095202.Guo Y Q, Wang L J, Wang Y, et al. High-order photon correlations through double Hanbury Brown-Twiss measurements [J]. Journal of Optics. 2020, 22(9): 095202.

【91】Guo Y Q, Yang R C, Li G, et al. Nonclassicality characterization in photon statistics based on binary-response single-photon detection [J]. Journal of Physics B: Atomic, Molecular and Optical Physics. 2011, 44(20): 205502.Guo Y Q, Yang R C, Li G, et al. Nonclassicality characterization in photon statistics based on binary-response single-photon detection [J]. Journal of Physics B: Atomic, Molecular and Optical Physics. 2011, 44(20): 205502.

【92】Cao J K, Yang P F, Tian Y L, et al. Measurement of high-order coherence of light field based on intensified charge-coupled device [J]. Acta Optica Sinica. 2019, 39(7): 0712008.
曹晋凯, 杨鹏飞, 田亚莉, 等. 基于增强型CCD光场高阶相干度的测量 [J]. 光学学报. 2019, 39(7): 0712008.

【93】Brown K R, Dani K M. Stamper-Kurn D M, et al. Deterministic optical Fock-state generation [J]. Physical Review A. 2003, 67(4): 043818.

【94】Yang R C, Li G, Li J, et al. Atomic N00N state generation in distant cavities by virtual excitations [J]. Chinese Physics B. 2011, 20(6): 060302.

【95】Yang R C, Li G, Zhang T C. Robust atomic entanglement in two coupled cavities via virtual excitations and quantum Zeno dynamics [J]. Quantum Information Processing. 2013, 12(1): 493-504.

【96】Li G, Zhang P F, Zhang T C. Entanglement of remote material qubits through nonexciting interaction with single photons [J]. Physical Review A. 2018, 97(5): 053808.Li G, Zhang P F, Zhang T C. Entanglement of remote material qubits through nonexciting interaction with single photons [J]. Physical Review A. 2018, 97(5): 053808.

【97】Yang B, Chen Y Y, Zheng Y G, et al. Quantum criticality and the Tomonaga-Luttinger liquid in one-dimensional Bose gases [J]. Physical Review Letters. 2017, 119(16): 165701.Yang B, Chen Y Y, Zheng Y G, et al. Quantum criticality and the Tomonaga-Luttinger liquid in one-dimensional Bose gases [J]. Physical Review Letters. 2017, 119(16): 165701.

【98】Vahala K J. Optical microcavities [J]. Nature. 2003, 424(6950): 839-846.

【99】Gorodetsky M L, Savchenkov A A, Ilchenko V S. Ultimate Q of optical microsphere resonators [J]. Optics Letters. 1996, 21(7): 453-455.

【100】Dong C H, He L, Xiao Y F, et al. Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing [J]. Applied Physics Letters. 2009, 94(23): 231119.Dong C H, He L, Xiao Y F, et al. Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing [J]. Applied Physics Letters. 2009, 94(23): 231119.

【101】Kiraz A, Michler P, Becher C, et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure [J]. Applied Physics Letters. 2001, 78(25): 3932-3934.Kiraz A, Michler P, Becher C, et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure [J]. Applied Physics Letters. 2001, 78(25): 3932-3934.

【102】Peng B, ?zdemir ? K, Chen W, et al. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities [J]. Nature communications. 2014, 5: 5082.Peng B, ?zdemir ? K, Chen W, et al. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities [J]. Nature communications. 2014, 5: 5082.

【103】Zhu J G, Ozdemir S K, Xiao Y F, et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator [J]. Nature Photonics. 2010, 4(1): 46-49.Zhu J G, Ozdemir S K, Xiao Y F, et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator [J]. Nature Photonics. 2010, 4(1): 46-49.

【104】Armani D K, Kippenberg T J, Spillane S M, et al. Ultra-high-Q toroid microcavity on a chip [J]. Nature. 2003, 421(6926): 925-928.

【105】Vu kovi J, Lon ar M, Mabuchi H, et al. Design of photonic crystal microcavities for cavity QED [J]. Physical Review E. 2001, 65(1): 016608.

【106】Gu Y, Wang L, Ren P, et al. Intrinsic quantum beats of atomic populations and their nanoscale realization through resonant plasmonic antenna [J]. Plasmonics. 2012, 7(1): 33-38.Gu Y, Wang L, Ren P, et al. Intrinsic quantum beats of atomic populations and their nanoscale realization through resonant plasmonic antenna [J]. Plasmonics. 2012, 7(1): 33-38.

【107】Ren J J, Gu Y, Zhao D X, et al. Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection [J]. Physical Review Letters. 2017, 118(7): 073604.Ren J J, Gu Y, Zhao D X, et al. Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection [J]. Physical Review Letters. 2017, 118(7): 073604.

【108】Zhang F, Ren J, Shan L, et al. Chiral cavity quantum electrodynamics with coupled nanophotonic structures [J]. Physical Review A. 2019, 100(5): 053841.Zhang F, Ren J, Shan L, et al. Chiral cavity quantum electrodynamics with coupled nanophotonic structures [J]. Physical Review A. 2019, 100(5): 053841.

【109】Wang X, Song L J, Wang C X, et al. Optimization of a magneto-optic trap using nanofibers [J]. Chinese Physics B. 2019, 28(7): 073701.Wang X, Song L J, Wang C X, et al. Optimization of a magneto-optic trap using nanofibers [J]. Chinese Physics B. 2019, 28(7): 073701.

【110】Song L J, Zhang P F, Li G, et al. -03-25 [P]. method for nondestructively measuring microsphere diameter uniformity: CN110333170A. 2020.
宋丽军, 张鹏飞, 李刚, 等. -03-25 [P]. . 一种无损测量微球直径均匀度的测量装置及方法:CN110333170A. 2020.

【111】Zhang P F, Wang X, Song L J, et al. Characterization of scattering losses in tapered optical fibers perturbed by a microfiber tip [J]. Journal of the Optical Society of America B. 2020, 37(5): 1401-1405.Zhang P F, Wang X, Song L J, et al. Characterization of scattering losses in tapered optical fibers perturbed by a microfiber tip [J]. Journal of the Optical Society of America B. 2020, 37(5): 1401-1405.

引用该论文

Zhang Tiancai,Wu Wei,Yang Pengfei,Li Gang,Zhang Pengfei. High-Finesse Micro-Optical Fabry-Perot Cavity and Its Applications in Strongly Coupled Cavity Quantum Electrodynamics[J]. Acta Optica Sinica, 2021, 41(1): 0127001

张天才,毋伟,杨鹏飞,李刚,张鹏飞. 高精细度法布里-珀罗光学微腔及其在强耦合腔量子电动力学中的应用[J]. 光学学报, 2021, 41(1): 0127001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF