首页 > 论文 > 激光与光电子学进展 > 57卷 > 18期(pp:181011--1)

基于BOF图像检索算法的变电站设备图像分类

Image Classification of Substation Equipment Based on BOF Image Retrieval Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于BOF(Bag of features)图像检索算法对电气设备图像进行分类,首先,通过加速鲁棒特征(SURF)算法寻找特征点位置,构造高维特征描述算子对特征进行描述和统计。然后,利用K-means聚类算法处理特征描述算子,得到独立的视觉词汇并汇总为特定数目的码书。将码书中的特征描述算子进行量化和加权统计,用特征向量直方图表示整个图像。最后,用训练集图像的高维特征向量进行机器学习,对未知图像进行快速准确分类。将自然光条件下拍摄的电气设备图像和电气设备工作状态下的红外图像作为两个实验样本集进行分类测试,结果表明,该算法可对不同图像集实现快速准确分类,准确率可达95.59%。

Abstract

This paper proposes a BOF(bag of features image) retrieval algorithm to classify electrical equipment images. First, the location of feature points is determined by speed up robust features (SURF) algorithm, and a high-dimensional feature description operator is constructed to describe and count the features. Then, the K-means clustering algorithm is used to deal with the feature description operators, and the independent visual vocabularies are collected into a specific number of codebooks. The feature description operators in codebooks are quantified and weighted, and the eigenvector histogram is used to represent the entire image. Finally, the high-dimensional feature vectors of the training set images are used for machine learning, and the unknown images are classified quickly and accurately. Electrical equipment images under natural light conditions and infrared images under the working conditions of electrical equipment are taken as two experimental sample sets for classification test. The results show that the algorithm can classify different image sets quickly and accurately with the highest accuracy of 95.59%.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391

DOI:10.3788/LOP57.181011

所属栏目:图像处理

基金项目:国家自然科学基金青年科学基金、山西省自然科学基金;

收稿日期:2019-12-23

修改稿日期:2020-02-14

网络出版日期:2020-09-01

作者单位    点击查看

赵庆生:太原理工大学电气与动力工程学院电力系统运行与控制山西省重点实验室, 山西 太原 030024
王雨滢:太原理工大学电气与动力工程学院电力系统运行与控制山西省重点实验室, 山西 太原 030024
梁定康:太原理工大学电气与动力工程学院电力系统运行与控制山西省重点实验室, 山西 太原 030024
郭尊:华北电力大学电气与电子工程学院, 北京 102206

联系人作者:赵庆生(zhaoqs1996@163.com)

备注:国家自然科学基金青年科学基金、山西省自然科学基金;

【1】Zuo G Y, Ma L, Xu C F, et al. Insulator detection method based on cross-connected convolutional neural network [J]. Automation of Electric Power Systems. 2019, 43(4): 101-108.
左国玉, 马蕾, 徐长福, 等. 基于跨连接卷积神经网络的绝缘子检测方法 [J]. 电力系统自动化. 2019, 43(4): 101-108.

【2】Zhao L M, Ye C, Zhang Y, et al. Path recognition method of robot vision navigation in unstructured environments [J]. Acta Optica Sinica. 2018, 38(8): 0815028.
赵立明, 叶川, 张毅, 等. 非结构化环境下机器人视觉导航的路径识别方法 [J]. 光学学报. 2018, 38(8): 0815028.

【3】Chen A W, Yue Q M, Zhang Z Y, et al. An image recognition method of substation breakers state based on robot [J]. Automation of Electric Power Systems. 2012, 36(6): 101-105.
陈安伟, 乐全明, 张宗益, 等. 基于机器人的变电站开关状态图像识别方法 [J]. 电力系统自动化. 2012, 36(6): 101-105.

【4】Huang L, Wu G P, Ye X H. Obstacle identification under low-light conditions of transmission line inspection robot [J]. Acta Optica Sinica. 2018, 38(9): 0915006.
黄乐, 吴功平, 叶旭辉. 输电线巡检机器人弱光条件下的障碍物识别研究 [J]. 光学学报. 2018, 38(9): 0915006.

【5】Chen Y W, Peng D G, Xia F, et al. Infrared image recognition based on region growing method and BP neural network [J]. Laser & Infrared. 2018, 48(3): 401-408.
陈跃伟, 彭道刚, 夏飞, 等. 基于区域生长法和BP神经网络的红外图像识别 [J]. 激光与红外. 2018, 48(3): 401-408.

【6】Lin G, Yang B, Zhang W. Human tracking in camera network with non-overlapping FOVs [J]. Journal of Southeast University (English Edition). 2012, 28(2): 156-163.

【7】Xi Z H, Hou C Y, Yuan K P, et al. Super-resolution reconstruction of accelerated image based on deep residual network [J]. Acta Optica Sinica. 2019, 39(2): 0210003.
席志红, 侯彩燕, 袁昆鹏, 等. 基于深层残差网络的加速图像超分辨率重建 [J]. 光学学报. 2019, 39(2): 0210003.

【8】Xu Y, Xu X L, Li C N, et al. Pedestrian detection combining with SVM classifier and HOG feature extraction [J]. Computer Engineering. 2016, 42(1): 56-60, 65.
徐渊, 许晓亮, 李才年, 等. 结合SVM分类器与HOG特征提取的行人检测 [J]. 计算机工程. 2016, 42(1): 56-60, 65.

【9】Zhou P P, Ding Q H, Luo H B, et al. Anomaly detection and location in crowded surveillance videos [J]. Acta Optica Sinica. 2018, 38(8): 0815007.
周培培, 丁庆海, 罗海波, 等. 视频监控中的人群异常行为检测与定位 [J]. 光学学报. 2018, 38(8): 0815007.

【10】Barinova O, Lempitsky V, Kholi P. On detection of multiple object instances using Hough transforms [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2012, 34(9): 1773-1784.

【11】Dalal N, Triggs B. Histograms of oriented gradients for human detection . [C]∥2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR''''05), June 20-25, 2005, San Diego, CA, USA. New York: IEEE. 2005, 886-893.

【12】Li H L, Xu C X, Ma Y F. An image classification and recognition algorithm based on multi-kernel learning SVM [J]. Modern Electronics Technique. 2018, 41(6): 50-52, 56.
李红丽, 许春香, 马耀锋. 基于多核学习SVM的图像分类识别算法 [J]. 现代电子技术. 2018, 41(6): 50-52, 56.

【13】Jhuria M, Kumar A, Borse R. Image processing for smart farming: detection of disease and fruit grading . [C]∥2013 IEEE Second International Conference on Image Information Processing (ICIIP-2013), December 9-11, 2013, Shimla, India. New York: IEEE. 2013, 521-526.

【14】Lu B, Zhu H F, Gu Z F, et al. Detection method of arrester fault based on infrared images [J]. Infrared. 2018, 39(1): 19-23.
卢彬, 朱海峰, 谷振富, 等. 基于红外图像的避雷器故障检测方法 [J]. 红外. 2018, 39(1): 19-23.

【15】Liu Q, Wang M J, Gao Q, et al. Fault detection of electrical equipment based on infrared imaging technology [J]. Electrical Measurement & Instrumentation. 2019, 56(10): 122-126, 152.
刘齐, 王茂军, 高强, 等. 基于红外成像技术的电气设备故障检测 [J]. 电测与仪表. 2019, 56(10): 122-126, 152.

【16】Csurka G, Dance C, Fan L, et al. Visual categorization with bags of keypoints [M]. ∥Advances in Cryptology-CRYPTO 2004: Lecture Notes in Computer Science 3152. Prague, Czech Republic: Springer Verlag. 2004, 59-74.

【17】Lin W C, Tsai C F, Chen Z Y, et al. Keypoint selection for efficient bag-of-words feature generation and effective image classification [J]. Information Sciences. 2016, 329: 33-51.

【18】Li T, Mei T, Kweon I S, et al. Contextual bag-of-words for visual categorization [J]. IEEE Transactions on Circuits and Systems for Video Technology. 2011, 21(4): 381-392.

【19】Li Q, Zhang H G, Guo J, et al. Improving bag-of-words scheme for scene categorization [J]. The Journal of China Universities of Posts and Telecommunications. 2012, 19: 166-171.

【20】Gall J, Lempitsky V. Class-specific Hough forests for object detection . [C]∥2009 IEEE Conference on Computer Vision and Pattern Recognition, June 20-25, 2009, Miami, FL, USA. New York: IEEE. 2009, 1022-1029.

引用该论文

Zhao Qingsheng,Wang Yuying,Liang Dingkang,Guo Zun. Image Classification of Substation Equipment Based on BOF Image Retrieval Algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(18): 181011

赵庆生,王雨滢,梁定康,郭尊. 基于BOF图像检索算法的变电站设备图像分类[J]. 激光与光电子学进展, 2020, 57(18): 181011

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF