首页 > 论文 > 光学学报 > 39卷 > 6期(pp:619001--1)

光子晶体光纤的布里渊增益谱特性

Brillouin Gain Spectrum Characteristics of Photonic Crystal Fibers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研究内全反射型光子晶体光纤(TIR-PCF)的结构参数对光纤布里渊增益、布里渊峰的个数以及相对峰值强度等布里渊增益谱(BGS)特性的影响。分析全反射型光子晶体光纤中的声光耦合效应,利用有限元分析方法,求解光纤中的光场和声场分布及其对应的BGS,探究空气孔层数、孔间距和孔直径等PCF参数对BGS的影响,获得布里渊增益和声学模式个数随孔间距和孔直径变化的规律。提出一种空气孔直径由内到外逐渐变大的、具有类似渐变折射率分布的新型光子晶体光纤结构。设计峰值强度差为8 dB的双峰BGS的光子晶体光纤,可将其用于基于布里渊拍频谱(BBS)的光纤传感系统中,使传感系统的信噪比提升2.5倍。

Abstract

We investigate the influence of the structural parameters of the total internal reflection photonic crystal fiber (TIR-PCF) on the Brillouin gain spectrum (BGS) characteristics, including the Brillouin gain, number of Brillouin peaks, and peak relative power. Further, the finite element analysis method is used to obtain the optical and acoustic field distributions for analyzing the acousto-optic coupling effect in the TIF-PCF; thus, the corresponding BGS of the PCF can be obtained. In addition, we discuss the effects of the PCF parameters, such as the air-hole layer number, pitch, and diameter, on the BGS. The law of the Brillouin gain and the acoustic mode number is obtained as a function of the air-hole pitch and diameter. Accordingly, we propose a novel PCF structure, whose air-hole diameters gradually increase from the inside to the outside and which exhibits a similar gradient refractive index distribution. A PCF with two peaks in its BGS and a peak power difference of 8 dB is designed and expected to be used in the fiber optic sensing systems based on the Brillouin beat spectrum to increase the signal-to-noise ratio of the sensing system by a factor of 2.5.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.0619001

所属栏目:非线性光学

基金项目:国家自然科学基金、航空科学基金、南京航空航天大学研究生创新基地开放基金;

收稿日期:2019-01-02

修改稿日期:2019-02-26

网络出版日期:2019-06-17

作者单位    点击查看

潘宇航:南京航空航天大学理学院应用物理系, 江苏 南京 211106
路元刚:南京航空航天大学理学院应用物理系, 江苏 南京 211106
彭楗钦:南京航空航天大学理学院应用物理系, 江苏 南京 211106
马海霞:南京航空航天大学理学院应用物理系, 江苏 南京 211106
王吉明:南京航空航天大学理学院应用物理系, 江苏 南京 211106

联系人作者:路元刚(luyg@nuaa.edu.cn)

备注:国家自然科学基金、航空科学基金、南京航空航天大学研究生创新基地开放基金;

【1】Woyessa G, Fasano A, Markos C et al. Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Optical Materials Express. 7(1), 286-295(2017).

【2】Jiang Y X, Fang Z J, Du Y Q et al. Highly sensitive temperature sensor using packaged optical microfiber coupler filled with liquids. Optics Express. 26(1), 356-366(2018).

【3】Mao C, Huang B, Wang Y et al. High-sensitivity gas pressure sensor based on hollow-core photonic bandgap fiber Mach-Zehnder interferometer. Optics Express. 26(23), 30108-30115(2018).

【4】Zhou D W, Wang B Z, Ba D X et al. Fast distributed Brillouin optical fiber sensing for dynamic strain measurement. Acta Optica Sinica. 38(3), (2018).
周登望, 王本章, 巴德欣 等. 用于动态应变测量的快速分布式布里渊光纤传感. 光学学报. 38(3), (2018).

【5】Zhang Z L, Gao L, Sun Y Y et al. Strain transfer law of distributed optical fiber sensor. Chinese Journal of Lasers. 46(4), (2019).
章征林, 高磊, 孙阳阳 等. 分布式光纤传感器应变传递规律研究. 中国激光. 46(4), (2019).

【6】Agrawal G. Nonlinear fiber optics. (2012).

【7】Zhou D W, Dong Y K, Wang B Z et al. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement. Light: Science & Applications. 7, (2018).

【8】Zhang L X, Li Y Q, An Q et al. Temperature sensing technology based on Rayleigh Brillouin optical time domain analysis with pulse coding. Acta Optica Sinica. 37(11), (2017).
张立欣, 李永倩, 安琪 等. 脉冲编码瑞利布里渊光时域分析温度传感技术. 光学学报. 37(11), (2017).

【9】Song M P, Bao C, Qiu C et al. A distributed optical-fiber sensor combined Brillouin optical time-domain analyzer with Brillouin optical time-domain reflectometer. Acta Optica Sinica. 30(3), 650-654(2010).
宋牟平, 鲍翀, 裘超 等. 结合布里渊光时域分析和光时域反射计的分布式光纤传感器. 光学学报. 30(3), 650-654(2010).

【10】Xu P B, Ba D X, He W M et al. Distributed Brillouin optical fiber temperature and strain sensing at a high temperature up to 1000 ℃ by using an annealed gold-coated fiber. Optics Express. 26(23), 29724-29734(2018).

【11】Teng L, Zhang H Y, Dong Y K et al. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings. Optics Letters. 41(18), 4413-4416(2016).

【12】Xu P B, Dong Y K, Zhou D W et al. 1200 ℃ high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis. Applied Optics. 55(21), 5471-5478(2016).

【13】Chen X, Xia L, Li W et al. Simulation of Brillouin gain properties in a double-clad As2Se3 chalcogenide photonic crystal fiber. Chinese Optics Letters. 15(4), (2017).

【14】Tchahame J C, Beugnot J C, Kudlinski A et al. Multimode Brillouin spectrum in a long tapered birefringent photonic crystal fiber. Optics Letters. 40(18), 4281-4284(2015).

【15】Jain V, Sharma S, Saini T S et al. Design and analysis of single-mode tellurite photonic crystal fibers for stimulated Brillouin scattering based slow-light generation. Applied Optics. 55(25), 6791-6796(2016).

【16】Lu Y G, Qin Z G, Lu P et al. Distributed strain and temperature measurement by Brillouin beat spectrum. IEEE Photonics Technology Letters. 25(11), 1050-1053(2013).

【17】Cregan R F. Single-mode photonic band gap guidance of light in air. Science. 285(5433), 1537-1539(1999).

【18】Koyamada Y, Sato S, Nakamura S et al. Simulating and designing Brillouin gain spectrum in single-mode fibers. Journal of Lightwave Technology. 22(2), 631-639(2004).

【19】Kobyakov A, Sauer M and Chowdhury D. Stimulated Brillouin scattering in optical fibers. Advances in Optics and Photonics. 2(1), 1-59(2010).

【20】Dasgupta S, Poletti F, Liu S et al. Modeling Brillouin gain spectrum of solid and microstructured optical fibers using a finite element method. Journal of Lightwave Technology. 29(1), 22-30(2011).

【21】Nielsen M and Mortensen N. Photonic crystal fiber design based on the V-parameter. Optics Express. 11(21), 2762-2768(2003).

【22】Folkenberg J R, Mortensen N A, Hansen K P et al. Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers. Optics Letters. 28(20), 1882-1884(2003).

【23】McElhenny J E, Pattnaik R K, Toulouse J et al. . Unique characteristic features of stimulated Brillouin scattering in small-core photonic crystal fibers. Journal of the Optical Society of America B. 25(4), 582-593(2008).

引用该论文

Yuhang Pan, Yuangang Lu, Jianqin Peng, Haixia Ma, Jiming Wang. Brillouin Gain Spectrum Characteristics of Photonic Crystal Fibers[J]. Acta Optica Sinica, 2019, 39(6): 0619001

潘宇航, 路元刚, 彭楗钦, 马海霞, 王吉明. 光子晶体光纤的布里渊增益谱特性[J]. 光学学报, 2019, 39(6): 0619001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF