首页 > 论文 > 中国激光 > 46卷 > 7期(pp:711001--1)

燃烧流场波长调制光谱吸收模型的研究

Absorption Model of Wavelength Modulation Spectroscopy in Combustion Flow Field

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于可调谐半导体吸收光谱的波长调制技术,建立了精确的吸收模型。通过两条已知吸收中心的吸收谱线,对标准具自由光谱范围进行标定,并利用更贴近激光器出光特性的描述模型,得到激光器频率-时间响应,结合实验室标定和HITEMP数据库的杂合吸收谱线参数,建立了可与实际吸收直接比较的精确模型,以诊断燃烧流场。本研究以H2O为目标分子,选取吸收中心为7185.60 cm -1和6807.83 cm -1两条吸收线,利用扣除背景的归一化二次谐波信号峰值反演流场温度,并在管式高温炉上进行实验验证,最高测量温度为1500 K,相对误差小于3.1%。吸收模型的准确性决定了所测流场参数的准确性,该模型可应用到更为复杂的燃烧流场环境,实现流场参数的精确测量。

Abstract

In this study, an accurate absorption model is established by using the wavelength modulation technology based on tunable diode laser absorption spectroscopy. The free spectral range of an etalon is calibrated by the two absorption lines whose transition line centers are known, and the frequency-time response of the laser is obtained using a description model close to the output characteristics of the laser. Along with the hybrid absorption line parameters calibrated in the laboratory and the HITEMP database, an accurate model that can be directly compared with the actual absorption is established for diagnosing the combustion flow field. Herein, H2O is the target molecule, and the transition line centers of the two selected lines are 7185.60 and 6807.83 cm -1. The flow field temperature can be obtained via the peak of the normalized second harmonic signal with background subtracted and verified in a high-temperature flow field generated by a tubular high-temperature furnace. The maximum temperature is 1500 K, and the relative measurement error is less than 3.1%. Further, the accuracy of the absorption model determines the accuracy of the measured flow field parameters. The method used to establish the model can be applied to the complex combustion flow fields for accurately measuring the flow field parameters.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/CJL201946.0711001

所属栏目:光谱学

基金项目:国家重点研发计划;

收稿日期:2019-01-24

修改稿日期:2019-03-29

网络出版日期:2019-07-01

作者单位    点击查看

张步强:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
许振宇:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
刘建国:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
夏晖晖:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
聂伟:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
袁峰:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
阚瑞峰:中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031

联系人作者:阚瑞峰( kanruifeng@aiofm.ac.cn)

备注:国家重点研发计划;

【1】Sun K, Chao X, Sur R et al. Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers. Measurement Science and Technology. 24(12), (2013).

【2】Kan R F, Xia H H, Xu Z Y et al. Research and progress of flow field diagnosis based on laser absorption spectroscopy. Chinese Journal of Lasers. 45(9), (2018).
阚瑞峰, 夏晖晖, 许振宇 等. 激光吸收光谱流场诊断技术应用研究与进展. 中国激光. 45(9), (2018).

【3】Goldenstein C S. Wavelength-modulation spectroscopy for determination of gas properties in hostile environments. Stanford: Stanford University. (2014).

【4】Sur R, Sun K, Jeffries J B et al. Scanned-wavelength-modulation-spectroscopy sensor for CO, CO2, CH4 and H2O in a high-pressure engineering-scale transport-reactor coal gasifier. Fuel. 150, 102-111(2015).

【5】Goldenstein C S, Spearrin R M, Jeffries J B et al. Infrared laser-absorption sensing for combustion gases. Progress in Energy and Combustion Science. 60, 132-176(2017).

【6】Goldenstein C S, Schultz I A, Spearrin R M et al. Scanned-wavelength-modulation spectroscopy near 2.5 μm for H2O and temperature in a hydrocarbon-fueled scramjet combustor. Applied Physics B. 116(3), 717-727(2014).

【7】Sun K, Sur R, Chao X et al. TDL absorption sensors for gas temperature and concentrations in a high-pressure entrained-flow coal gasifier. Proceedings of the Combustion Institute. 34(2), 3593-3601(2013).

【8】Wilson G V H. Signal amplitudes of modulation-broadened Lorentz and Gaussian magnetic resonances. Journal of Applied Physics. 36(11), 3505-3506(1965).

【9】Philippe L C and Hanson R K. Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows. Applied Optics. 32(30), 6090-6103(1993).

【10】Sun K. Utilization of multiple harmonics of wavelength modulation absorption spectroscopy for practical gas sensing. Stanford: Stanford University. (2013).

【11】Goldenstein C S, Schultz I A, Jeffries J B et al. Two-color absorption spectroscopy strategy for measuring the column density and path average temperature of the absorbing species in nonuniform gases. Applied Optics. 52(33), 7950-7962(2013).

【12】Sun P S, Zhang Z R, Xia H et al. Study on real-time temperature measurement based on wavelength modulation technology. Acta Optica Sinica. 35(2), (2015).
孙鹏帅, 张志荣, 夏滑 等. 基于波长调制技术的温度实时测量方法研究. 光学学报. 35(2), (2015).

引用该论文

Buqiang Zhang,Zhenyu Xu,Jianguo Liu,Huihui Xia,Wei Nie,Feng Yuan,Ruifeng Kan. Absorption Model of Wavelength Modulation Spectroscopy in Combustion Flow Field[J]. Chinese Journal of Lasers, 2019, 46(7): 0711001

张步强,许振宇,刘建国,夏晖晖,聂伟,袁峰,阚瑞峰. 燃烧流场波长调制光谱吸收模型的研究[J]. 中国激光, 2019, 46(7): 0711001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF