首页 > 论文 > 激光与光电子学进展 > 57卷 > 16期(pp:161026--1)

基于拉普拉斯算子先验项的水下图像复原

Underwater Image Restoration Based on a Laplace Operator Prior Term

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由于水体及水中的悬浮粒子对光的吸收和散射作用,水下观测到的图像呈现出模糊、对比度低、噪声严重等问题,加大了水下图像分析与理解的难度。为了克服这些缺陷,以水下光学成像模型为基础,提出了一种基于拉普拉斯算子先验项的,可同时去雾、去噪的快速变分复原方法。首先,根据水下光学成像模型设计变分模型的数据项和规则项,对拟恢复图像采用拉普拉斯算子先验项作为变分能量方程的规则项。然后,采用改进后的红通道先验估计得到全局背景光,结合红通道先验估计得到每个通道的透射率图。为进一步提高计算效率,引入交替方向乘子法(ADMM)对所提出的模型进行交替优化迭代求解。实验结果表明,该算法能有效地去除水雾,抑制水下图像的噪声,提高图像的对比度和清晰度。

Abstract

Images captured underwater often suffer from haze, noise, and low contrast owing to the absorption and scattering of water and suspended particles, making it difficult for analysis and understanding. To overcome these limitations, combined with an underwater optical image formation model, a fast variational approach based on a Laplace operator prior term is proposed herein to simultaneously perform dehazing and denoising. Based on the underwater optical image formation model, the data and regular items of the unified variational model are designed, wherein the Laplacian operator prior term is adopted as the regular term. The prior estimation of the improved red channel and the underwater red channel are used to obtain the global background light and the transmission map, respectively. To further accelerate the whole progress, a fast alternating direction multiplier method (ADMM) is introduced to solve the energy function. Our proposed variational method based on the Laplace operator prior term is executed on a set of representative real underwater images, demonstrating that it can successfully remove haze, suppress noise, and improve contrast and visibility.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN911.73

DOI:10.3788/LOP57.161026

所属栏目:图像处理

基金项目:国家自然科学基金、山东省自然科学基金、中国博士后基金面上项目;

收稿日期:2019-12-02

修改稿日期:2020-01-16

网络出版日期:2020-08-01

作者单位    点击查看

李景明:青岛大学计算机科学与技术学院, 山东 青岛 266071
侯国家:青岛大学计算机科学与技术学院, 山东 青岛 266071
潘振宽:青岛大学计算机科学与技术学院, 山东 青岛 266071
刘玉海:中科曙光国际信息产业有限公司, 山东 青岛 266101
赵馨:青岛大学计算机科学与技术学院, 山东 青岛 266071
王国栋:青岛大学计算机科学与技术学院, 山东 青岛 266071

联系人作者:侯国家(hgjouc@126.com)

备注:国家自然科学基金、山东省自然科学基金、中国博士后基金面上项目;

【1】Dai C G, Lin M X, Wang Z, et al. Color compensation based on bright channel and fusion for underwater image enhancement [J]. Acta Optica Sinica. 2018, 38(11): 1110003.
代成刚, 林明星, 王震, 等. 基于亮通道色彩补偿与融合的水下图像增强 [J]. 光学学报. 2018, 38(11): 1110003.

【2】Shi D, Li Q W, Fan X N, et al. Underwater image enhancement algorithm based on Contourlet transform and multi-scale Retinex [J]. Laser & Optoelectronics Progress. 2010, 47(4): 041001.
石丹, 李庆武, 范新南, 等. 基于Contourlet变换和多尺度Retinex的水下图像增强算法 [J]. 激光与光电子学进展. 2010, 47(4): 041001.

【3】He K M, Sun J, Tang X O. Single image haze removal using dark channel prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2011, 33(12): 2341-2353.

【4】Li C Y, Guo J C, Cong R M, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior [J]. IEEE Transactions on Image Processing. 2016, 25(12): 5664-5677.

【5】Chiang J Y, Chen Y C. Underwater image enhancement by wavelength compensation and dehazing [J]. IEEE Transactions on Image Processing. 2012, 21(4): 1756-1769.

【6】Xu Y, Zeng X B. Underwater image restoration based on red-dark channel prior and inverse filtering [J]. Laser & Optoelectronics Progress. 2018, 55(2): 021009.
徐岩, 曾祥波. 基于红色暗通道先验和逆滤波的水下图像复原 [J]. 激光与光电子学进展. 2018, 55(2): 021009.

【7】Cai C D, Huo G Y, Zhou Y, et al. Underwater image restoration method based on scene depth estimation and white balance [J]. Laser & Optoelectronics Progress. 2019, 56(3): 031008.
蔡晨东, 霍冠英, 周妍, 等. 基于场景深度估计和白平衡的水下图像复原 [J]. 激光与光电子学进展. 2019, 56(3): 031008.

【8】Peng Y T, Cosman P C. Underwater image restoration based on image blurriness and light absorption [J]. IEEE Transactions on Image Processing. 2017, 26(4): 1579-1594.

【9】Tikhonov A N. Regularization of incorrectly posed problems [J]. Soviet Mathematics Doklady. 1963, 4(6): 1624-1627.

【10】Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D: Nonlinear Phenomena. 1992, 60(1/2/3/4): 259-268.

【11】Kimmel R, Elad M, Shaked D, et al. A variational framework for retinex [J]. International Journal of Computer Vision. 2003, 52(1): 7-23.

【12】Ng M K, Wang W. A total variation model for retinex [J]. SIAM Journal on Imaging Sciences. 2011, 4(1): 345-365.

【13】Fang F M, Li F, Zeng T Y. Single image dehazing and denoising: a fast variational approach [J]. SIAM Journal on Imaging Sciences. 2014, 7(2): 969-996.

【14】Liang J W, Zhang X Q. Retinex by higher order total variation L1 decomposition [J]. Journal of Mathematical Imaging and Vision. 2015, 52(3): 345-355.

【15】Pu Y F, Siarry P, Chatterjee A, et al. A fractional-order variational framework for retinex: fractional-order partial differential equation-based formulation for multi-scale nonlocal contrast enhancement with texture preserving [J]. IEEE Transactions on Image Processing. 2018, 27(3): 1214-1229.

【16】Goldstein T. O''''Donoghue B, Setzer S, et al. Fast alternating direction optimization methods [J]. SIAM Journal on Imaging Sciences. 2014, 7(3): 1588-1623.

【17】Galdran A, Pardo D, Picón A, et al. Automatic red-channel underwater image restoration [J]. Journal of Visual Communication and Image Representation. 2015, 26: 132-145.

【18】Zhao X W, Jin T, Qu S. Deriving inherent optical properties from background color and underwater image enhancement [J]. Ocean Engineering. 2015, 94: 163-172.

【19】Pan P W, Yuan F, Cheng E, et al. Underwater image de-scattering and enhancing using dehazenet and HWD [J]. Journal of Marine Science and Technology. 2018, 26(4): 531-540.

【20】Panetta K, Gao C, Agaian S. No reference color image contrast and quality measures [J]. IEEE Transactions on Consumer Electronics. 2013, 59(3): 643-651.

【21】Fang Y M, Ma K D, Wang Z, et al. No-reference quality assessment of contrast-distorted images based on natural scene statistics [J]. IEEE Signal Processing Letters. 2015, 22(7): 838-842.

【22】Yang M, Sowmya A. An underwater color image quality evaluation metric [J]. IEEE Transactions on Image Processing. 2015, 24(12): 6062-6071.

【23】Jiang J. Study on the noise of laser underwater imaging system and enhancement technology [D]. Qinhuangdao: Yanshan University. 2010, 38-40.
蒋洁. 激光水下成像噪声分析及图像处理方法研究 [D]. 秦皇岛: 燕山大学. 2010, 38-40.

【24】Wang X, Zhu H C, Ning C, et al. Combination of dark-channel prior with sparse representation for underwater image restoration [J]. Journal of Electronics & Information Technology. 2018, 40(2): 264-271.
王鑫, 朱行成, 宁晨, 等. 融合暗原色先验和稀疏表示的水下图像复原 [J]. 电子与信息学报. 2018, 40(2): 264-271.

引用该论文

Li Jingming,Hou Guojia,Pan Zhenkuan,Liu Yuhai,Zhao Xin,Wang Guodong. Underwater Image Restoration Based on a Laplace Operator Prior Term[J]. Laser & Optoelectronics Progress, 2020, 57(16): 161026

李景明,侯国家,潘振宽,刘玉海,赵馨,王国栋. 基于拉普拉斯算子先验项的水下图像复原[J]. 激光与光电子学进展, 2020, 57(16): 161026

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF