首页 > 论文 > 光学学报 > 40卷 > 5期(pp:0500001--1)

环境监测领域中光谱学技术进展 (封面文章) (创刊四十周年特邀综述)

Advances with Respect to the Environmental Spectroscopy Monitoring Technology (Cover Paper) (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

环境的变化不但影响着现在和未来的世界,而且一直是国际科学前沿关注的热点。环境问题的解决离不开先进的监测技术和手段。环境光谱学监测技术利用光学中的吸收、发射、散射以及大气辐射传输等方法,通过建立特征因子指纹光谱数据库和定量解析算法,获取污染物的特性,可用于空气质量、固定和流动污染源的自动监测,具有实时快速、高灵敏、监测范围广等优势,是当今国际环境监测的发展方向和主导技术。目前形成了以激光雷达技术、差分光学吸收光谱学技术、可调谐二极管激光光谱学技术、傅里叶变换红外光谱学技术等为主体的一系列环境监测技术及体系。基于这些技术和体系对监测信息的获取、传输和共享,为全社会提供了基础环境信息,同时也推动了基于监测数据的环境质量评价体系的发展,为我国的环境管理提供了科学依据。

Abstract

The environmental changes occurring throughout the world have become the focus of global scientific research. The spectroscopic environmental monitoring technology can be used to obtain information about pollutants based on the optical absorption, emission, scattering, and atmospheric radiation transmission principles by establishing a characteristic factor fingerprint spectrum database and a quantitative analysis algorithm. Further, this technology can be applied to dynamically monitor the air quality as well as the fixed and mobile pollutant sources. The environmental spectroscopy monitoring technology, which can perform real-time and rapid monitoring at high sensitivities and large scales, has attracted considerable research attention. To date, several principal environmental monitoring technologies and systems have been established. These mainly include investigations and applications of the lidar technology, differential optical absorption spectroscopy, tunable diode laser spectroscopy, and Fourier-transform infrared spectroscopy. Based on these technologies and systems, the acquisition, transmission and sharing of monitoring information provides basic environmental information for the whole society, which promotes the development of the environmental quality assessment systems based on the monitoring data and provides the scientific basis for environmental management in China.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:X831

DOI:10.3788/AOS202040.0500001

所属栏目:综述

基金项目:国家重点研发计划、中国科学院青年创新促进会人才支撑计划;

收稿日期:2019-10-28

修改稿日期:2019-11-27

网络出版日期:2020-03-01

作者单位    点击查看

刘文清:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
陈臻懿:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
刘建国:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
谢品华:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
张天舒:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
赵南京:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
司福祺:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
胡仁志:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
殷高方:中国科学院安徽光学精密机械研究所, 安徽 合肥 230031

联系人作者:刘文清(zychen@aiofm.ac.cn); 陈臻懿();

备注:国家重点研发计划、中国科学院青年创新促进会人才支撑计划;

【1】China National Environmental Monitoring Centre. Real time data[2019-10-27]. http:∥www.cnemc.cn/sssj/.[2019-10-27]. 0.
中国环境监测总站. 实时数据[2019-10-27]. http:∥www.cnemc.cn/sssj/.[2019-10-27]. 0.

【2】Xiao J F, Chevallier F, Gomez C, et al. Remote sensing of the terrestrial carbon cycle: a review of advances over 50 years [J]. Remote Sensing of Environment. 2019, 233: 111383.

【3】de Oliveira A M, Souza C T, et al. Analysis of atmospheric aerosol optical properties in the northeast Brazilian atmosphere with remote sensing data from MODIS and CALIOP/CALIPSO satellites, AERONET photometers and a ground-based lidar [J]. Atmosphere. 2019, 10(10): 594.

【4】Whiteman D N. Examination of the traditional Raman lidar technique I evaluating the temperature-dependent lidar equations [J]. Applied Optics. 2003, 42(15): 2571-2592.

【5】Frankenberg C. O''''Dell C, Guanter L, et al. Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO2 retrievals [J]. Atmospheric Measurement Techniques. 2012, 5(8): 2081-2094.

【6】Seinfeld J H, Pandis S N. Atmospheric chemistry and physics: from air pollution to climate change [M]. USA: John Wiley & Sons. 2016.

【7】Hong Q Q, Liu C, Chan K L, et al. Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River [J]. Atmospheric Chemistry and Physics. 2018, 18(8): 5931-5951.

【8】Shen X C, Ye S B, Xu L, et al. Study on baseline correction methods for the Fourier transform infrared spectra with different signal-to-noise ratios [J]. Applied Optics. 2018, 57(20): 5794-5799.

【9】Tan W, Zhao S H, Liu C, et al. Estimation of winter time NOx emissions in Hefei, a typical inland city of China, using mobile MAX-DOAS observations [J]. Atmospheric Environment. 2019, 200: 228-242.

【10】Abad G G, Souri A H, Bak J, et al. Five decades observing Earth''''s atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space [J]. Journal of Quantitative Spectroscopy and Radiative Transfer. 2019, 238: 106478.

【11】Yang T P, Si F Q, Luo Y H, et al. Source contribution analysis of tropospheric NO2 based on two-dimensional MAX-DOAS measurements [J]. Atmospheric Environment. 2019, 210: 186-197.

【12】?ermák P, Karlovets E V, Mondelain D, et al. High sensitivity CRDS of CO2 in the 1.74 μm transparency window. A validation test for the spectroscopic databases [J]. Journal of Quantitative Spectroscopy and Radiative Transfer. 2018, 207: 95-103.

【13】Shao L G, Fang B, Zheng F, et al. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 μm DFB laser [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019, 222: 117118.

【14】Pushkarsky M B, Webber M E, Baghdassarian O, et al. Laser-based photoacoustic ammonia sensors for industrial applications [J]. Applied Physics B: Lasers and Optics. 2002, 75(2/3): 391-396.

【15】Liu Z M, Li H P, Zhang Y G, et al. Algorithm of molecular standard absorption cross-section in HITRAN database for atmospheric monitoring by FTIR spectrometry [J]. Chinese Journal of Spectroscopy Laboratory. 2012, 29(1): 39-46.
刘志明, 李海平, 张玉广, 等. 应用于FTIR气体监测的HITRAN数据库分子标准吸收截面计算方法研究 [J]. 光谱实验室. 2012, 29(1): 39-46.

【16】Prasad P, Raman M, Ratnam M, et al. Nocturnal, seasonal and intra-annual variability of tropospheric aerosols observed using ground-based and space-borne lidars over a tropical location of India [J]. Atmospheric Environment. 2019, 213: 185-198.

【17】Bohlmann S, Baars H, Radenz M, et al. Ship-borne aerosol profiling with lidar over the Atlantic Ocean: from pure marine conditions to complex dust-smoke mixtures [J]. Atmospheric Chemistry & Physics. 2018, 18(13): 9661-9679.

【18】Popovici I E, Goloub P, Podvin T, et al. Description and applications of a mobile system performing on-road aerosol remote sensing and in situ measurements [J]. Atmospheric Measurement Techniques. 2018, 11(8): 4671-4691.

【19】Mallik C, Tomsche L, Bourtsoukidis E, et al. Oxidation processes in the eastern Mediterranean atmosphere: evidence from the modelling of HOx measurements over Cyprus [J]. Atmospheric Chemistry and Physics. 2018, 18(14): 10825-10847.

【20】Berresheim H, Plass-Dülmer C, Elste T, et al. OH in the coastal boundary layer of Crete during MINOS: measurements and relationship with ozone photolysis [J]. Atmospheric Chemistry and Physics. 2003, 3(3): 639-649.

【21】Winiberg F A F, Smith S C, Bejan I, et al. Pressure-dependent calibration of the OH and HO2 channels of a FAGE HOx instrument using the highly instrumented reactor for atmospheric chemistry (HIRAC) [J]. Atmospheric Measurement Techniques. 2015, 8(2): 523-540.

【22】Li X Q, Lu K D, Wei Y J, et al. Technique progress and chemical mechanism research of tropospheric Peroxy radical in field measurement [J]. Progress in Chemistry. 2014, 26(4): 682-694.
李晓倩, 陆克定, 魏永杰, 等. 对流层大气过氧自由基实地测量的技术进展及其在化学机理研究中的应用 [J]. 化学进展. 2014, 26(4): 682-694.

【23】Kukui A, Ancellet G, Le Bras G. Chemical ionisation mass spectrometer for measurements of OH and Peroxy radical concentrations in moderately polluted atmospheres [J]. Journal of Atmospheric Chemistry. 2008, 61(2): 133-154.

【24】Fuchs H, Dorn H P, Bachner M, et al. Comparison of OH concentration measurements by DOAS and LIF during SAPHIR chamber experiments at high OH reactivity and low NO concentration [J]. Atmospheric Measurement Techniques. 2012, 5(7): 1611-1626.

【25】Mao J, Ren X, Zhang L, et al. Insights into hydroxyl measurements and atmospheric oxidation in a California forest [J]. Atmospheric Chemistry and Physics. 2012, 12(17): 8009-8020.

【26】Paton-Walsh C, Guérette é A, Kubistin D, et al. The MUMBA campaign: measurements of urban, marine and biogenic air [J]. Earth System Science Data. 2017, 9(1): 349-362.

【27】Chen Z Y, Schofield R, Rayner P, et al. Characterization of aerosols over the Great Barrier Reef: the influence of transported continental sources [J]. Science of the Total Environment. 2019, 690: 426-437.

【28】Ferrero E, Alessandrini S, Anderson B, et al. Lagrangian simulation of smoke plume from fire and validation using ground-based lidar and aircraft measurements [J]. Atmospheric Environment. 2019, 213: 659-674.

【29】Li J, See K F, Chi J. Water resources and water pollution emissions in China''''s industrial sector: a green-biased technological progress analysis [J]. Journal of Cleaner Production. 2019, 229: 1412-1426.

【30】Wang Y, Zhao N J, Ma M J, et al. Chromium detection in water enriched with graphite based on laser-induced breakdown spectroscopy [J]. Laser Techonology. 2013, 37(6): 808-811.
王寅, 赵南京, 马明俊, 等. 石墨富集方式下水中Cr元素的LIBS检测 [J]. 激光技术. 2013, 37(6): 808-811.
Wang Y, Zhao N J, Ma M J, et al. Chromium detection in water enriched with graphite based on laser-induced breakdown spectroscopy [J]. Laser Techonology. 2013, 37(6): 808-811.
王寅, 赵南京, 马明俊, 等. 石墨富集方式下水中Cr元素的LIBS检测 [J]. 激光技术. 2013, 37(6): 808-811.

【31】Sorensen J P R, Vivanco A, Ascott M J, et al. Online fluorescence spectroscopy for the real-time evaluation of the microbial quality of drinking water [J]. Water Research. 2018, 137: 301-309.

【32】Chen W P, Xie T, Li X N, et al. Thinking of construction of soil pollution prevention and control technology system in China [J]. Acta Pedologica Sinica. 2018, 55(3): 557-568.
陈卫平, 谢天, 李笑诺, 等. 中国土壤污染防治技术体系建设思考 [J]. 土壤学报. 2018, 55(3): 557-568.

【33】Liu F Z, Li Y J. Soil monitoring and analysis technology[M]. Beijing: Chemical Industry Press, 2015, 89-99.
刘凤枝, 李玉浸. 土壤监测分析技术[M]. 北京: 化学工业出版社, 2015, 89-99.

【34】Cardelli R, Becagli M, Marchini F, et al. Biochar impact on the estimation of the colorimetric-based enzymatic assays of soil [J]. Soil Use and Management. 2019, 35(3): 478-481.

【35】Senesi G S, Senesi N. Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon. A review [J]. Analytica Chimica Acta. 2016, 938: 7-17.

【36】Nguyen H V M, Moon S J, Choi J H. Improving the application of laser-induced breakdown spectroscopy for the determination of total carbon in soils [J]. Environmental Monitoring and Assessment. 2015, 187(2): 28.

【37】Meng D S, Zhao N J, Ma M J, et al. Rapid soil classification with laser induced breakdown spectroscopy [J]. Spectroscopy and Spectral Analysis. 2017, 37(1): 241-246.
孟德硕, 赵南京, 马明俊, 等. 基于激光诱导击穿光谱技术的土壤快速分类方法研究 [J]. 光谱学与光谱分析. 2017, 37(1): 241-246.

引用该论文

Liu Wenqing,Chen Zhenyi,Liu Jianguo,Xie Pinhua,Zhang Tianshu,Zhao Nanjing,Si Fuqi,Hu Renzhi,Yin Gaofang. Advances with Respect to the Environmental Spectroscopy Monitoring Technology[J]. Acta Optica Sinica, 2020, 40(5): 0500001

刘文清,陈臻懿,刘建国,谢品华,张天舒,赵南京,司福祺,胡仁志,殷高方. 环境监测领域中光谱学技术进展[J]. 光学学报, 2020, 40(5): 0500001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF