首页 > 论文 > 激光与光电子学进展 > 56卷 > 20期(pp:202403--1)

表面等离激元热电子光电探测

Photodetection based on Surface Plasmon-Induced Hot Electrons

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

表面等离激元诱导热电子光电转换是近年来的研究热点,在光电探测、太阳能电池、光催化反应等方面有着广阔的应用前景。表面等离激元热电子的快速转移和收集可以有效避免弛豫、复合、束缚等过程所引起的能量损失,提高器件的光电转换效率和速度。此外,利用等离激元热电子转移可以打破光电探测波段受限于半导体带隙的瓶颈,为红外光电探测提供有效手段。除贵金属外,重掺杂半导体材料由于可调控的红外表面等离激元共振特性也逐渐引起了人们的广泛关注。介绍了表面等离激元热电子的激发、转移机制及表面等离激元热电子红外光电探测等方面的研究进展,并讨论了该领域存在的问题及挑战,为设计高性能表面等离激元热电子光电转换器件提供了参考。

Abstract

Photoelectric conversion of surface plasmon-induced hot electrons has recently attracted considerable attention as it shows great potential in applications such as highly efficient photodetection, solar cells, and catalytic reactions. The quick transfer and collection of plasmon-induced hot electrons can effectively avoid energy loss caused by relaxation, recombination, and trapping, thereby improving the efficiency and speed of photoelectric conversion. More importantly, plasmon-induced hot electron transfer contributes towards a photoresponse that is beyond the bandgap limit of semiconductors, providing an effective approach for infrared photodetection. In addition to noble metals, heavily doped semiconductors have attracted significant attention owing to their tunable localized surface plasmon resonance in the infrared region of the electromagnetic spectrum. This review focuses on the fundamental mechanism of the excitation and transfer of plasmon-induced hot electrons and the research progress of infrared photodetection based on hot-electron transfer. Furthermore, the current problems and challenges in this field are discussed in order to provide guidance for the design of high-performance devices based on plasmon-induced hot-electron transfer.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.202403

所属栏目:“等离激元新效应与应用”专题

基金项目:国家重点研发计划、国家自然科学基金)、中国科学院战略性先导科技专项;

收稿日期:2019-05-31

修改稿日期:2019-07-31

网络出版日期:2019-10-01

作者单位    点击查看

于远方:东南大学物理学院, 江苏 南京 211189
倪振华:东南大学物理学院, 江苏 南京 211189

联系人作者:倪振华(zhni@seu.edu.cn)

备注:国家重点研发计划、国家自然科学基金)、中国科学院战略性先导科技专项;

【1】Mueller T, Xia F N and Avouris P. Graphene photodetectors for high-speed optical communications. Nature Photonics. 4(5), 297-301(2010).

【2】Rogalski A, Antoszewski J and Faraone L. Third-generation infrared photodetector arrays. Journal of Applied Physics. 105(9), (2009).

【3】Yu Y F, Miao F, He J et al. Photodetecting and light-emitting devices based on two-dimensional materials. Chinese Physics B. 26(3), (2017).

【4】Yu X C, Li Y Y, Hu X N et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Nature Communications. 9, (2018).

【5】Fang H H and Hu W D. Photogating in low dimensional photodetectors. Advanced Science. 4(12), (2017).

【6】Adinolfi V and Sargent E H. Photovoltage field-effect transistors. Nature. 542(7641), 324-327(2017).

【7】Lu X W, Jiang P and Bao X H. Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector. Nature Communications. 10, (2019).

【8】Liu E F, Long M S, Zeng J W et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Advanced Functional Materials. 26(12), 1938-1944(2016).

【9】Ni Z Y, Ma L L, Du S C et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano. 11(10), 9854-9862(2017).

【10】Agrawal A, Johns R W and Milliron D J. Control of localized surface plasmon resonances in metal oxide nanocrystals. Annual Review of Materials Research. 47(1), 1-31(2017).

【11】Du L C, Furube A, Yamamoto K et al. Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size. The Journal of Physical Chemistry C. 113(16), 6454-6462(2009).

【12】Clavero C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics. 8(2), 95-103(2014).

【13】Marchuk K and Willets K A. Localized surface plasmons and hot electrons. Chemical Physics. 445, 95-104(2014).

【14】Spoor F C M, Kunneman L T, Evers W H et al. . Hole cooling is much faster than electron cooling in PbSe quantum dots. ACS Nano. 10(1), 695-703(2016).

【15】Landsberg P T. Recombination in semiconductors. (2003).

【16】Boehme S C, Azpiroz J M, Aulin Y V et al. Density of trap states and auger-mediated electron trapping in CdTe quantum-dot solids. Nano Letters. 15(5), 3056-3066(2015).

【17】Mooney J, Krause M M, Saari J I et al. Challenge to the deep-trap model of the surface in semiconductor nanocrystals. Physical Review B. 87(8), (2013).

【18】Konstantatos G, Levina L, Fischer A et al. Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. Nano Letters. 8(5), 1446-1450(2008).

【19】Jiang J, Ling C Y, Xu T et al. Defect engineering for modulating the trap states in 2D photoconductors. Advanced Materials. 30(40), (2018).

【20】Barnes W L, Dereux A and Ebbesen T W. Surface plasmon subwavelength optics. Nature. 424(6950), 824-830(2003).

【21】Xia Y N and Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bulletin. 30(5), 338-348(2005).

【22】Wang Z L. A review on research progress in surface plasmons. Progress in Physics. 29(3), 287-324(2009).
王振林. 表面等离激元研究新进展. 物理学进展. 29(3), 287-324(2009).

【23】Shan H Y, Zu S and Fang Z Y. Research progress in ultrafast dynamics of plasmonic hot electrons. Laser & Optoelectronics Progress. 54(3), (2017).
单杭永, 祖帅, 方哲宇. 表面等离激元热电子超快动力学研究进展. 激光与光电子学进展. 54(3), (2017).

【24】Lounis S D, Runnerstrom E L, Llordés A et al. Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals. The Journal of Physical Chemistry Letters. 5(9), 1564-1574(2014).

【25】Lee J, Gim Y, Yang J et al. Graphene phototransistors sensitized by Cu2-xSe nanocrystals with short amine ligands. The Journal of Physical Chemistry C. 121(9), 5436-5443(2017).

【26】Sun T, Wang Y J, Yu W Z et al. Flexible broadband graphene photodetectors enhanced by plasmonic Cu3-xP colloidal nanocrystals. Small. 13(42), (2017).

【27】Gong M G, Sakidja R, Liu Q F et al. Broadband photodetectors enabled by localized surface plasmonic resonance in doped iron pyrite nanocrystals. Advanced Optical Materials. 6(8), (2018).

【28】Li X G, Xiao D and Zhang Z Y. Landau damping of quantum plasmons in metal nanostructures. New Journal of Physics. 15(2), (2013).

【29】Brongersma M L, Halas N J and Nordlander P. Plasmon-induced hot carrier science and technology. Nature Nanotechnology. 10(1), 25-34(2015).

【30】Huang X Y, Li H B, Zhang C F et al. Efficient plasmon-hot electron conversion in Ag-CsPbBr3 hybrid nanocrystals. Nature Communications. 10, (2019).

【31】Zheng B Y, Zhao H Q, Manjavacas A et al. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nature Communications. 6, (2015).

【32】Wu K F. Rodríguez-Córdoba W E, Yang Y, et al. Plasmon-induced hot electron transfer from the Au tip to CdS rod in CdS-Au nanoheterostructures. Nano Letters. 13(11), 5255-5263(2013).

【33】Li J T, Cushing S K, Meng F K et al. Plasmon-induced resonance energy transfer for solar energy conversion. Nature Photonics. 9(9), 601-607(2015).

【34】Wu K and Chen J. McBride J R, et al. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science. 349(6248), 632-635(2015).

【35】Knight M W, Sobhani H, Nordlander P et al. Photodetection with active optical antennas. Science. 332(6030), 702-704(2011).

【36】Wang W Y, Klots A, Prasai D et al. Hot electron-based near-infrared photodetection using bilayer MoS2. Nano Letters. 15(11), 7440-7444(2015).

【37】Li W and Valentine J. Metamaterial perfect absorber based hot electron photodetection. Nano Letters. 14(6), 3510-3514(2014).

【38】Tagliabue G, Jermyn A S, Sundararaman R et al. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nature Communications. 9, (2018).

【39】Schwind M and Kasemo B. Zori I. Localized and propagating plasmons in metal films with nanoholes . Nano Letters. 13(4), 1743-1750(2013).

【40】Wurtz G A, Pollard R, Hendren W et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotechnology. 6(2), 107-111(2011).

【41】Liu M Y, Zhou W, Wang T et al. High performance Au-Cu alloy for enhanced visible-light water splitting driven by coinage metals. Chemical Communications. 52(25), 4694-4697(2016).

【42】Blandre E, Jalas D, Petrov A Y et al. Limit of efficiency of generation of hot electrons in metals and their injection inside a semiconductor using a semiclassical approach. ACS Photonics. 5(9), 3613-3620(2018).

【43】Yu Y F, Li Z Z, Wang W H et al. Investigation of multilayer domains in large-scale CVD monolayer graphene by optical imaging. Journal of Semiconductors. 38(3), (2017).

【44】Konstantatos G, Badioli M, Gaudreau L et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology. 7(6), 363-368(2012).

【45】Liu C H, Chang Y C, Norris T B et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotechnology. 9(4), 273-278(2014).

【46】Fang H H, Hu W D, Wang P et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire. Nano Letters. 16(10), 6416-6424(2016).

【47】Long M S, Liu E F, Wang P et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Letters. 16(4), 2254-2259(2016).

【48】Sharma A, Bhattacharyya B, Srivastava A K et al. High performance broadband photodetector using fabricated nanowires of bismuth selenide. Scientific Reports. 6, (2016).

【49】Li M J, Bhaumik S, Goh T W et al. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals. Nature Communications. 8, (2017).

【50】Olshansky J H, Ding T X, Lee Y V et al. Hole transfer from photoexcited quantum dots: the relationship between driving force and rate. Journal of the American Chemical Society. 137(49), 15567-15575(2015).

【51】Lian Z C, Sakamoto M, Matsunaga H et al. Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface. Nature Communications. 9, (2018).

【52】Fang Z Y, Liu Z, Wang Y M et al. Graphene-antenna sandwich photodetector. Nano Letters. 12(7), 3808-3813(2012).

【53】Sobhani A, Knight M W, Wang Y M et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nature Communications. 4, (2013).

【54】Yu Y, Ji Z H, Zu S et al. Ultrafast plasmonic hot electron transfer in Au nanoantenna/MoS2 heterostructures. Advanced Functional Materials. 26(35), 6394-6401(2016).

【55】Ratchford D C, Dunkelberger A D, Vurgaftman I et al. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 films. Nano Letters. 17(10), 6047-6055(2017).

【56】Pescaglini A, Martín A, Cammi D et al. Hot-electron injection in Au nanorod-ZnO nanowire hybrid device for near-infrared photodetection. Nano Letters. 14(11), 6202-6209(2014).

【57】Sakamoto M, Kawawaki T, Kimura M et al. Clear and transparent nanocrystals for infrared-responsive carrier transfer. Nature Communications. 10, (2019).

【58】Cai X Y, Wang X W, Li R X et al. Controllable modulation of surface plasmon resonance wavelength of ITO thin films. Laser & Optoelectronics Progress. 55(5), (2018).
蔡昕旸, 王新伟, 李如雪 等. ITO薄膜表面等离子体共振波长的可控调节. 激光与光电子学进展. 55(5), (2018).

【59】Lai S M, Huang Z W, Wang Y J et al. Simulation and analysis of local surface plasmon resonance of Ag nanostructures. Laser & Optoelectronics Progress. 55(12), (2018).
赖淑妹, 黄志伟, 王仰江 等. Ag纳米结构局域表面等离激元共振模拟与分析. 激光与光电子学进展. 55(12), (2018).

引用该论文

Yu Yuanfang,Ni Zhenhua. Photodetection based on Surface Plasmon-Induced Hot Electrons[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202403

于远方,倪振华. 表面等离激元热电子光电探测[J]. 激光与光电子学进展, 2019, 56(20): 202403

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF