首页 > 论文 > 光学学报 > 40卷 > 16期(pp:1614001--1)

基于空芯光纤的光泵浦4 μm连续波HBr气体激光器 (封底文章)

Optically Pumped 4 μm CW HBr Gas Laser Based on Hollow-Core Fiber (Back Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

报道了一种基于空芯光纤的光泵浦中红外HBr气体激光器。用一台可调谐的窄线宽2 μm连续波掺铥光纤放大器泵浦一段充低压HBr气体的4.4 m反共振空芯光纤,通过将种子激光的波长精确调谐到HBr(同位素H 79Br)气体R(2)吸收线1971.7 nm附近,使得处于振动基态 v0的H 79Br分子跃迁至振动激发态v2,并在振动态v2与v1之间形成粒子数反转,通过跃迁选择定律同时激射出两条谱线R(2)和P(4),波长分别为3977.2 nm和4165.3 nm。当HBr气压为6.2 mbar时,4 μm激光最大输出功率为125 mW,相对于耦合进空芯光纤的泵浦光功率转换效率约为10%。通过进一步改善空芯光纤的传输损耗谱,提高泵浦光耦合效率,可大幅提升激光效率和输出功率,并且利用HBr分子的能级特性,将来有望实现大范围调谐的中红外激光输出。

Abstract

An optically pumped mid-infrared HBr gas laser based on hollow-core fiber (HCF) is reported. A tunable narrow linewidth 2 μm continuous-wave thulium-doped fiber amplifier is used to pump a 4.4 m anti-resonance hollow-core fiber filled with low-pressure HBr gas. When the seed wavelength is precisely tuned to the R(2) absorption line near 1971.7 nm of hydrogen bromide isotope H 79Br, the H 79Br molecules in the vibrational ground state v0 will transit to the vibrational excited-state v2, then a population inversion will be formed between the vibrational excited states v2 and v1. Due to the transition selection rules, two transitions will simultaneously occur by the spectral lines R(2) and P(4), whose wavelengths are 3977.2 nm and 4165.3 nm, respectively. When the HBr pressure is 6.2 mbar, the maximum output power of 4 μm laser is 125 mW, and the optic-to-optic conversion efficiency is about 10% in terms of the pump light coupled into the HCF. By further improving the transmission loss spectrum of the HCF and increasing the coupling efficiency of the pump light, the laser efficiency and output power can be greatly improved, and a wide-range tunable mid-infrared laser emission could be obtained owing to the energy level characteristics of HBr molecules in the future.

广告组5 - 光束分析仪
补充资料

中图分类号:TN24

DOI:10.3788/AOS202040.1614001

所属栏目:激光器与激光光学

基金项目:国家自然科学基金面上项目、湖南省自然科学基金杰出青年科学基金;

收稿日期:2020-03-30

修改稿日期:2020-05-06

网络出版日期:2020-08-01

作者单位    点击查看

周智越:国防科技大学前沿交叉学科学院, 湖南 长沙 410073脉冲功率激光技术国家重点实验室, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073
李昊:国防科技大学前沿交叉学科学院, 湖南 长沙 410073脉冲功率激光技术国家重点实验室, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073
崔宇龙:国防科技大学前沿交叉学科学院, 湖南 长沙 410073脉冲功率激光技术国家重点实验室, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073
黄威:国防科技大学前沿交叉学科学院, 湖南 长沙 410073脉冲功率激光技术国家重点实验室, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073
王泽锋:国防科技大学前沿交叉学科学院, 湖南 长沙 410073脉冲功率激光技术国家重点实验室, 湖南 长沙 410073高能激光技术湖南省重点实验室, 湖南 长沙 410073

联系人作者:王泽锋(zefengwang_nudt@163.com)

备注:国家自然科学基金面上项目、湖南省自然科学基金杰出青年科学基金;

【1】Jackson S D. Towards high-power mid-infrared emission from a fibre laser [J]. Nature Photonics. 2012, 6(7): 423-431.

【2】Zhou P, Wang X, Ma Y, et al. Review on recent progress on mid-infrared fiber lasers [J]. Laser Physics. 2012, 22(11): 1744-1751.

【3】Ehrenreich T, Leveille R, Majid I, et al. 1 kW, all-glass Tm:fiber laser [J]. Proceedings of SPIE. 2010, 7580: 758016.

【4】Jackson S D, Sabella A, Hemming A, et al. High-power 83 W holmium-doped silica fiber laser operating with high beam quality [J]. Optics Letters. 2007, 32(3): 241-243.

【5】Hemming A, Bennetts S, Simakov N, et al. Development of resonantly cladding-pumped holmium-doped fibre lasers [J]. Proceedings of SPIE. 2012, 8237: 82371J.

【6】El-Agmy R M, Al-Hosiny N. 2.31 μm laser under up-conversion pumping at 1.064 μm in Tm 3+: ZBLAN fibre lasers [J]. Electronics Letters. 2010, 46(13): 936-937.

【7】Aydin Y O, Fortin V, Vallee R, et al. Towards power scaling of 2.8 μm fiber lasers [J]. Optics Letters. 2018, 43(18): 4542-4545.

【8】Fortin V, Bernier M, Bah S T, et al. 30 W fluoride glass all-fiber laser at 2.94 μm [J]. Optics Letters. 2015, 40(12): 2882-2885.

【9】Li J F, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm [J]. Optics Letters. 2011, 36(18): 3642-3644.

【10】Woodward R, Majewski M R, Bharathan G, et al. Watt-level dysprosium fiber laser at 3.15 μm with 73% slope efficiency [J]. Optics Letters. 2018, 43(7): 1471-1474.

【11】Fortin V, Jobin F, Larose M, et al. 10-W-level monolithic dysprosium-doped fiber laser at 324 μm [J]. Optics Letters. 2019, 44(3): 491-494.

【12】Maes F, Stihler C, Pleau L P, et al. 3.42 μm lasing in heavily-erbium-doped fluoride fibers [J]. Optics Express. 2019, 27(3): 2170-2183.

【13】Maes F, Fortin V, Bernier M, et al. 5.6 W monolithic fiber laser at 3.55 μm [J]. Optics Letters. 2017, 42(11): 2054-2057.

【14】Qin Z P, Xie G Q, Ma J G, et al. Mid-infrared Er:ZBLAN fiber laser reaching 3.68 μm wavelength [J]. Chinese Optics Letters. 2017, 15(11): 111402.

【15】Henderson-Sapir O, Jackson S D, Ottaway D J. Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser [J]. Optics Letters. 2016, 41(7): 1676-1679.

【16】Maes F, Fortin V, Poulain S, et al. Room-temperature fiber laser at 3.92 μm [J]. Optica. 2018, 5(7): 761-764.

【17】Nampoothiri A V V, Jones A M, Fourcade-Dutin C, et al. Hollow-core optical fiber gas lasers (HOFGLAS): a review [J]. Optical Materials Express. 2012, 2(7): 948-961.

【18】Jones A M. Nampoothiri A V V, Ratanavis A, et al. Mid-infrared gas filled photonic crystal fiber laser based on population inversion [J]. Optics Express. 2011, 19(3): 2309-2316.

【19】Wang Z F, Belardi W, Yu F, et al. Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber [J]. Optics Express. 2014, 22(18): 21872-21878.

【20】Hassan M R A, Yu F, Wadsworth W J, et al. Cavity-based mid-IR fiber gas laser pumped by a diode laser [J]. Optica. 2016, 3(3): 218-221.

【21】Cui Y L, Zhou Z Y, Huang W, et al. Anti-resonant hollow-core fibers based 4.3-μm carbon dioxide lasers [J]. Acta Optica Sinica. 2019, 39(12): 1214002.
崔宇龙, 周智越, 黄威, 等. 基于反共振空芯光纤的4.3 μm二氧化碳激光器 [J]. 光学学报. 2019, 39(12): 1214002.

【22】Zhou Z Y, Tang N, Li Z X, et al. High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers [J]. Optics Express. 2018, 26(15): 19144-19153.

【23】Nampoothiri A V V, Debord B, Alharbi M, et al. CW hollow-core optically pumped I2 fiber gas laser [J]. Optics Letters. 2015, 40(4): 605-608.

【24】Aghbolagh F B A, Nampoothiri V, Debord B, et al. Mid IR hollow core fiber gas laser emitting at 4.6 μm [J]. Optics Letters. 2019, 44(2): 383-386.

【25】Cui Y L, Huang W, Wang Z F, et al. 4.3 μm fiber laser in CO2-filled hollow-core silica fibers [J]. Optica. 2019, 6(8): 951-954.

【26】Wang Z F, Yu F, Wadsworth W J, et al. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering [J]. Laser Physics Letters. 2014, 11(10): 105807.

【27】Chen Y B, Wang Z F, Gu B, et al. Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth [J]. Optics Letters. 2016, 41(21): 5118-5121.

【28】Li Z X, Huang W, Cui Y L, et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm [J]. Optics Letters. 2018, 43(19): 4671-4674.

【29】Wang Z F, Yu F, William J, et al. Single-pass high-gain 1.9 μm optical fiber gas Raman laser [J]. Acta Optica Sinica. 2014, 34(8): 0814004.
王泽锋, 于飞, William J Wadsworth, 等. 单程高增益1.9 μm光纤气体拉曼激光器 [J]. 光学学报. 2014, 34(8): 0814004.

【30】Chen Y B, Gu B, Wang Z F, et al. 1.5 μm fiber gas Raman laser source [J]. Acta Optica Sinica. 2016, 36(5): 0506002.
陈育斌, 顾博, 王泽锋, 等. 1.5 μm光纤气体拉曼激光光源 [J]. 光学学报. 2016, 36(5): 0506002.

【31】Gu B, Chen Y B, Wang Z F. Red, green and blue laser emissions from H2-filled hollow-core fiber by stimulated Raman scattering [J]. Acta Optica Sinica. 2016, 36(8): 0806005.
顾博, 陈育斌, 王泽锋. 基于空芯光纤中氢气级联SRS的红绿蓝色激光 [J]. 光学学报. 2016, 36(8): 0806005.

【32】Chen Y B, Wang Z F, Gu B, et al. 1.5 μm fiber ethane gas Raman laser amplifier [J]. Acta Optica Sinica. 2017, 37(5): 0514002.
陈育斌, 王泽锋, 顾博, 等. 1.5 μm光纤乙烷气体拉曼激光放大器 [J]. 光学学报. 2017, 37(5): 0514002.

【33】Miller H C, Radzykewycz D T, Hager G. An optically pumped mid-infrared HBr laser [J]. IEEE Journal of Quantum Electronics. 1994, 30(10): 2395-2400.

【34】Kletecka C S, Rudolph W G, Nicholson J W, et al. Cascade lasing of molecular HBr in the four-micron region pumped by a Nd∶YAG laser [J]. Proceedings of SPIE. 2002, 4760: 594-602.

【35】Botha L R, Bollig C. Esser M J D, et al. Ho∶YLF pumped HBr laser [J]. Optics Express. 2009, 17(22): 20615-20622.

【36】Koen W, Jacobs C, Bollig C, et al. Optically pumped tunable HBr laser in the mid-infrared region [J]. Optics Letters. 2014, 39(12): 3563-3566.

【37】Banwell C N. Fundamentals of molecular spectroscopy [M]. London: McGraw-Hill Book Company. 1972.

【38】HITRAN spectroscopic database [EB/OL]. 2020.HITRAN spectroscopic database [EB/OL]. 2020.

【39】Chen Y B, Wang Z F, Li Z X, et al. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm [J]. Optics Express. 2017, 25(17): 20944-20949.

引用该论文

Zhou Zhiyue,Li Hao,Cui Yulong,Huang Wei,Wang Zefeng. Optically Pumped 4 μm CW HBr Gas Laser Based on Hollow-Core Fiber[J]. Acta Optica Sinica, 2020, 40(16): 1614001

周智越,李昊,崔宇龙,黄威,王泽锋. 基于空芯光纤的光泵浦4 μm连续波HBr气体激光器[J]. 光学学报, 2020, 40(16): 1614001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF