基于符合计数的极弱光强度关联干涉测量研究
Research on Intensity-Correlated Interferometry with Ultra-Weak Light Based on Coincidence Counting
摘要
实现脉冲星导航首先需要对脉冲星进行高精度测量,而脉冲星辐射的X射线相干时间极短,到达卫星探测器的光通量极低,必须在极弱光条件下实现强度关联探测来获取脉冲星信息。针对这一问题,使用可见光模拟源进行了强度关联干涉测量实验研究,获取二阶干涉条纹并得到了对应的角直径,分析了符合计数对测量误差的影响,以及探测系统的空间和时间分辨率对强度关联干涉测量结果的影响,为脉冲星X射线强度关联探测系统硬件参数的选取提供了依据。
Abstract
Pulsar navigation requires the precise measurement of pulsars. Pulsar X-ray radiation has an extremely short coherence time, and satellite detectors receive only ultralow photon flux. Therefore, to obtain pulsar information and under the conditions of ultralow photon flux, intensity-correlated detection should be implemented. To solve this problem, we conducted an experimental study of intensity-correlated interferometry using a simulated visible-light source. We obtained second-order interference fringes and a corresponding angular diameter. We analyzed herein how coincidence counting affected measurement errors and how the spatial and temporal resolutions of the detecting system affected the intensity-correlated interferometry. The results provide a basis for determining the hardware parameters for X-ray intensity-correlated detection of pulsars.
中图分类号:O434.19
所属栏目:“计算光学成像"专题
基金项目:国家重点研发计划、国家自然科学基金重大项目;
收稿日期:2019-07-29
修改稿日期:2019-09-29
网络出版日期:2020-01-01
作者单位 点击查看
陆荣华:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
喻虹:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
谈志杰:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学, 北京 100049
朱瑞国:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800中国科学院大学, 北京 100049
韩申生:中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
联系人作者:陆荣华(lurh@siom.ac.cn)
备注:国家重点研发计划、国家自然科学基金重大项目;
【1】Shuai P, Chen S L, Wu Y F, et al. Navigation principles using X-ray pulsars [J]. Journal of Astronautics. 2007, 28(6): 1538-1543.
帅平, 陈绍龙, 吴一帆, 等. X射线脉冲星导航原理 [J]. 宇航学报. 2007, 28(6): 1538-1543.
【2】Brown R H, Twiss R Q. Interferometry of the intensity fluctuations in light-I. Basic theory: the correlation between photons in coherent beams of radiation [J]. Proceedings of the Royal Society of London Series a Mathematical and Physical Sciences. 1957, 242(1230): 300-324.
【3】Brown R H, Twiss R Q. A test of a new type of stellar interferometer on Sirius [J]. Nature. 1956, 178(4541): 1046-1048.
【4】Glauber R J. The quantum theory of optical coherence [J]. Physical Review. 1963, 130(6): 2529-2539.
【5】Kunimune Y, Yoda Y, Izumi K, et al. Two-photon correlations in X-rays from a synchrotron radiation source [J]. Journal of Synchrotron Radiation. 1997, 4(4): 199-203.
【6】Scarcelli G, Valencia A, Shih Y. Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime [J]. Physical Review A. 2004, 70(5): 051802.
【7】Scarcelli G, Valencia A, Shih Y. Two-photon interference with thermal light [J]. Europhysics Letters (EPL). 2004, 68(5): 618-624.
【8】Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with true thermal light [J]. Optics Letters. 2005, 30(18): 2354-2356.
【9】Scarcelli G, Berardi V, Shih Y. Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations? [J]. Physical Review Letters. 2006, 96(6): 063602.
【10】Gatti A, Bondani M, Lugiato L A, et al. Comment on “can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” [J]. Physical Review Letters. 2007, 98(3): 039301.
【11】Wang L G, Qamar S, Zhu S Y, et al. Hanbury Brown-Twiss effect and thermal light ghost imaging: a unified approach [J]. Physical Review A. 2009, 79(3): 033835.
【12】Jeltes T. McNamara J M, Hogervorst W, et al. Comparison of the Hanbury Brown-Twiss effect for bosons and fermions [J]. Nature. 2007, 445(7126): 402-405.
【14】Liu X F, Chen X H, Yao X R, et al. Lensless ghost imaging with sunlight [J]. Optics Letters. 2014, 39(8): 2314-2317.
【15】Maga?a-Loaiza O S, Mirhosseini M, Cross R M, et al. Hanbury Brown and Twiss interferometry with twisted light [J]. Science Advances. 2016, 2(4): e1501143.
【16】Yu H, Lu R H, Han S S, et al. Fourier-transform ghost imaging with hard X rays [J]. Physical Review Letters. 2016, 117(11): 113901.
【19】Zhu R G, Yu H, Lu R H, et al. Spatial multiplexing reconstruction for Fourier-transform ghost imaging via sparsity constraints [J]. Optics Express. 2018, 26(3): 2181-2190.
【21】Gorobtsov O Y, Mercurio G, Brenner G, et al. Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry [J]. Physical Review A. 2017, 95(2): 023843.
【22】Gorobtsov O Y, Mukharamova N, Lazarev S, et al. Diffraction based Hanbury Brown and Twiss interferometry at a hard X-ray free-electron laser [J]. Scientific Reports. 2018, 8: 2219.
【23】Brown R H, Twiss R Q. Interferometry of the intensity fluctuations in light III. Applications to astronomy [J]. Proceedings of the Royal Society of London Series a Mathematical and Physical Sciences. 1958, 248(1253): 199-221.
【24】The quantum theory of light[M]. Yu L: Wang W X, Duan C X, et al., Transl. Beijing: Higher Education Press, 1992, 118-124.
Loudon R, Loudon R. 光的量子理论[M]. 于良: 王维新, 段存贤, 等, 译. 北京: 高等教育出版社, 1992, 118-124.
【25】Statistical optics[M]. Qin K C: Liu P S, Cao Q Z, et al., Transl. Beijing: Science Press, 1992, 15-28.
Goodman J W, Goodman J W. 统计光学[M]. 秦克诚: 刘培森, 曹其智, 等, 译. 北京: 科学出版社, 1992, 15-28.
【26】Everitt B S, Skrondal A. The Cambridge dictionary of statistics[M]. New York: , 2010, 418-419.
【27】Als-Nielsen J. McMorrow D. Elements of modern X-ray physics[M]. Feng D L: Transl. 2nd ed. Shanghai: Fudan University Press, 2014, 17-18.
麦克莫罗. 艾尔斯-尼尔森, [M]. 现代X光物理原理. 封东来: 译. 2版. 上海: 复旦大学出版社, 2014, 17-18.
引用该论文
Wei Zhen,Lu Ronghua,Yu Hong,Tan Zhijie,Zhu Ruiguo,Han Shensheng. Research on Intensity-Correlated Interferometry with Ultra-Weak Light Based on Coincidence Counting[J]. Acta Optica Sinica, 2020, 40(1): 0111013
韦震,陆荣华,喻虹,谈志杰,朱瑞国,韩申生. 基于符合计数的极弱光强度关联干涉测量研究[J]. 光学学报, 2020, 40(1): 0111013