首页 > 论文 > 中国激光 > 46卷 > 12期(pp:1203001--1)

基于金属掩模的全息光刻微纳光栅制备工艺

Fabrication of Holographic Lithography Micro-Nano Gratings Using Metal Mask

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

优化设计了基于金属掩模的全息光刻微纳光栅制备工艺方案,基于GaAs衬底利用全息光刻和感应耦合等离子体(ICP)干法刻蚀技术制备出周期为860 nm的光栅图形。将磁控溅射生长的金属硬掩模作为光栅刻蚀的阻挡层引入到刻蚀工艺中,并利用lift-off技术制备Ni掩模。对比了以光刻胶、SiO2、Ni三种材料作为ICP干法刻蚀掩模对光栅刻蚀深度及形貌的影响,结果表明,Ni掩模具有较强的抗刻蚀特性。扫描电镜测试结果显示:将50 nm厚的Ni作为硬掩模,可以实现深宽比约为4.9的光栅结构,该结构的槽宽为300 nm,刻蚀深度为1454 nm,具有陡直的侧壁形貌及良好的周期性和均匀性。

Abstract

The fabrication process of holographic lithography micro-nano gratings using metal masks is designed and optimized. First, an 860 nm periodic grating is prepared using holographic lithography and inductively coupled plasma (ICP) dry etching on the GaAs substrate. The hard metal mask grown by magnetron sputtering is introduced into the etching process as a barrier layer for grating etching and the Ni mask is fabricated by the lift-off method. It has been shown that when photoresist, SiO2, and Ni are used as masks for ICP dry etching, they determine the etching depth and morphology of the grating. Results show that the Ni mask has strong etch resistance. Scanning electron microscopy demonstrates that Ni with a thickness of 50 nm can be used as a hard mask to create a grating with an aspect ratio of about 4.9. The grating has a groove width and etching depth of 300 nm and 1454 nm, respectively, with steep sidewall morphology and good periodicity and uniformity.

中国激光微信矩阵
补充资料

中图分类号:TN305.7

DOI:10.3788/CJL201946.1203001

所属栏目:材料与薄膜

基金项目:吉林省科技发展计划 、吉林省教育厅“十三五”科学技术项目;

收稿日期:2019-07-24

修改稿日期:2019-09-02

网络出版日期:2019-12-01

作者单位    点击查看

龚春阳:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
范杰:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
邹永刚:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
王海珠:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
赵鑫:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
马晓辉:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
崔超:陆军驻长春地区第一军区代室, 吉林 长春 130103
宋子男:陆军驻长春地区第一军区代室, 吉林 长春 130103

联系人作者:范杰(fanjie@cust.edu.cn)

备注:吉林省科技发展计划 、吉林省教育厅“十三五”科学技术项目;

【1】Du J Y, Li H, Qu Y, et al. Design of distributed Bragg grating in 1064 nm narrow linewidth DBR lasers . [C]//2015 International Conference on Optoelectronics and Microelectronics (ICOM), July 16-18, 2015, Changchun, China. New York: IEEE. 2015, 348-350.

【2】Jia P, Liu X L, Chen Y Y, et al. Study of dual-wavelength distributed Bragg reflection semiconductor laser with high order Bragg gratings [J]. Chinese Journal of Lasers. 2015, 42(8): 0802007.
贾鹏, 刘晓莉, 陈泳屹, 等. 双波长高阶光栅分布布拉格反射半导体激光器的研究 [J]. 中国激光. 2015, 42(8): 0802007.

【3】Bickford J R, Cho P S, Farrell M E, et al. The investigation of subwavelength grating waveguides for photonic integrated circuit based sensor applications [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2019, 25(3): 8200410.

【4】Agarwal A J, Kumar M, Jaiswal A K. et al. Analysis to compensate dispersion in optical communication link using chirp grating [J]. International Journal of Electronics & Computer Science Engineering. 2013, 2(3): 980-986.

【5】Golovastikov N V, Bykov D A, Doskolovich L L, et al. Spatiotemporal optical pulse transformation by a resonant diffraction grating [J]. Journal of Experimental and Theoretical Physics. 2015, 121(5): 785-792.

【6】Lü Q, Li W H. Bayanheshig, et al. Interferometric precision displacement measurement system based on diffraction grating [J]. Chinese Optics. 2017, 10(1): 39-50.
吕强, 李文昊. 巴音贺希格, 等. 基于衍射光栅的干涉式精密位移测量系统 [J]. 中国光学. 2017, 10(1): 39-50.

【7】Pachnicke S, Zhu J N, Lawin M, et al. Tunable WDM-PON system with centralized wavelength control [J]. Journal of Lightwave Technology. 2016, 34(2): 812-818.

【8】Wagner C, Eiselt M H, Lawin M, et al. Impairment analysis of WDM-PON based on low-cost tunable lasers [J]. Journal of Lightwave Technology. 2016, 34(22): 5300-5307.

【9】Diba A S, Xie F, Gross B, et al. Application of a broadly tunable SG-DBR QCL for multi-species trace gas spectroscopy [J]. Optics Express. 2015, 23(21): 27123-27133.

【10】Spie?berger S, Schiemangk M, Wicht A, et al. DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz [J]. Applied Physics B. 2011, 104(4): 813-818.

【11】Chen C, Zhao L J, Qiu J F, et al. Dual-wavelength distributed Bragg reflector semiconductor laser based on a composite resonant cavity [J]. Chinese Physics B. 2012, 21(9): 094208.

【12】Yu L Q, Lu D, Pan B W, et al. Widely tunable narrow-linewidth lasers using self-injection DBR lasers [J]. IEEE Photonics Technology Letters. 2015, 27(1): 50-53.

【13】Hu C, Wang X P, You C, et al. Application of high resolution electron beam lithography technology in micro-and nano-fabrication [J]. Electronics and Packaging. 2017, 17(5): 28-32, 36.
胡超, 王兴平, 尤春, 等. 高精度电子束光刻技术在微纳加工中的应用 [J]. 电子与封装. 2017, 17(5): 28-32, 36.

【14】Sreenivasan S V, Willson C G, Schumaker N E, et al. Low-cost nanostructure patterning using step and flash imprint lithography [J]. Proceedings of SPIE. 2002, 4608: 187-194.

【15】Lai N D, Huang Y D, Lin J H, et al. Fabrication of periodic nanovein structures by holography lithography technique [J]. Optics Express. 2009, 17(5): 3362-3369.

【16】Bao S W, Song Q H, Xie C M. The influence of grating shape formation fluctuation on DFB laser diode threshold condition [J]. Optical Review. 2018, 25(3): 330-335.

【17】Korpij?rvi V M, Viheri?l? J, Koskinen M, et al. High-power temperature-stable GaInNAs distributed Bragg reflector laser emitting at 1180 nm [J]. Optics Letters. 2016, 41(4): 657-660.

【18】Jin Y, Gao L, Chen J, et al. High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings [J]. Nature Communications. 2018, 9: 1407.

【19】Paoletti R, Codato S, Coriasso C, et al. Wavelength stabilized DBR high power diode laser using EBL optical confining grating technology [J]. Proceedings of SPIE. 2018, 10514: 105140V.

【20】Dylewicz R, Patela S, Hogg R A, et al. Low-dimensional waveguide grating fabrication in GaN with use of SiCl4/Cl2/Ar-based inductively coupled plasma dry etching [J]. Journal of Electronic Materials. 2009, 38(5): 635-639.

【21】Ye Z, Wang Y, Gao Z Q, et al. Preparation of 528 nm periodic hole array based on holographic lithography system [J]. Chinese Journal of Lasers. 2015, 42(8): 0809003.
叶镇, 王勇, 高占琦, 等. 基于全息光刻系统制备528 nm周期孔阵图形 [J]. 中国激光. 2015, 42(8): 0809003.

【22】Liu D D, Wang Y, Ye Z, et al. Grating fabrication of 808 nm distributed feedback semiconductor laser by holographic photolithography [J]. Chinese Journal of Lasers. 2015, 42(2): 0202008.
刘丹丹, 王勇, 叶镇, 等. 全息光刻制备808 nm分布反馈半导体激光器的光栅 [J]. 中国激光. 2015, 42(2): 0202008.

【23】Liu K, Ren X M, Huang Y Q. et al. Inductively coupled plasma etching of GaAs in Cl2/Ar, Cl2/Ar/O2 chemistries with photoresist mask [J]. Applied Surface Science. 2015, 356: 776-779.

引用该论文

Gong Chunyang,Fan Jie,Zou Yonggang,Wang Haizhu,Zhao Xin,Ma Xiaohui,Cui Chao,Song Zinan. Fabrication of Holographic Lithography Micro-Nano Gratings Using Metal Mask[J]. Chinese Journal of Lasers, 2019, 46(12): 1203001

龚春阳,范杰,邹永刚,王海珠,赵鑫,马晓辉,崔超,宋子男. 基于金属掩模的全息光刻微纳光栅制备工艺[J]. 中国激光, 2019, 46(12): 1203001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF