首页 > 论文 > 激光与光电子学进展 > 56卷 > 20期(pp:202408--1)

几何相位电磁超表面:从原理到应用

Geometric-Phase Metasurfaces: from Physics to Applications

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

从电磁相位的产生机理角度,电磁超表面可分为利用微结构共振响应的共振相位超表面和利用微结构各向异性响应的几何相位超表面。同共振相位超表面相比,几何相位超表面因为具有非色散、偏振依赖、易于制备等特点,因而受到广泛关注。综述了利用几何相位超表面来自由调控电磁波的原理和方法,重点讲述电磁波远场和近场的一系列调控现象并介绍这些现象在全息成像、特殊光束激发和探测、平面消色差透镜等方面的具体应用。

Abstract

According to the generation mechanism of electromagnetic (EM) phase, electromagnetic metasurfaces can be divided into resonance-based metasurfaces using resonance response of microstructures and geometric-phase metasurfaces using anisotropic response of microstructures. In comparison with the resonance-based metasurfaces, geometric-phase metasurfaces have attracted much attention in recent years because of their non-dispersion, polarization dependence, and easy fabrication. This study presents an overview of the development of geometric-phase metasurfaces from the principle and method of their free modulation of EM waves to their extraordinary wavefront manipulation abilities in both the far- and near-field regions. Finally, we also present three typical applications enabled by geometric-phase metasurfaces, including highly efficient meta-hologram, vortex beam generator/detector, and flat achromatic metalens.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/LOP56.202408

所属栏目:“等离激元新效应与应用”专题

基金项目:国家自然科学基金、上海市自然科学基金、上海市青年科技启明星计划、上海市东方学者计划、复旦大学应用表面物理国家重点实验室开放课题;

收稿日期:2019-07-11

修改稿日期:2019-09-02

网络出版日期:2019-10-01

作者单位    点击查看

胡中:上海大学特种光纤与光接入网重点实验室, 上海 200444
徐涛:上海大学特种光纤与光接入网重点实验室, 上海 200444
汤蓉:上海大学特种光纤与光接入网重点实验室, 上海 200444
郭会杰:复旦大学物理学系应用表面物理国家重点实验室, 上海 200433
肖诗逸:上海大学特种光纤与光接入网重点实验室, 上海 200444

联系人作者:肖诗逸(phxiao@shu.edu.cn)

备注:国家自然科学基金、上海市自然科学基金、上海市青年科技启明星计划、上海市东方学者计划、复旦大学应用表面物理国家重点实验室开放课题;

【1】Pendry J B, Holden A J, Stewart W J et al. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters. 76(25), 4773-4776(1996).

【2】Pendry J B, Holden A J, Robbins D J et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques. 47(11), 2075-2084(1999).

【3】Smith D R, Padilla W J, Vier D C et al. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters. 84(18), 4184-4187(2000).

【4】Soukoulis C M and Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics. 5(9), 523-530(2011).

【5】Shalaev V M. Optical negative-index metamaterials. Nature Photonics. 1(1), 41-48(2007).

【6】Shelby R A and Smith D R. Nemat-Nasser S C, et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Applied Physics Letters. 78(4), 489-491(2001).

【7】Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters. 85(18), 3966-3969(2000).

【8】Fang N, Lee H, Sun C et al. Sub-diffraction-limited optical imaging with a silver superlens. Science. 308(5721), 534-537(2005).

【9】Liu Z W, Lee H, Xiong Y et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science. 315(5819), (2007).

【10】Ziolkowski R W and Heyman E. Wave propagation in media having negative permittivity and permeability. Physical Review E. 64(5), (2001).

【11】Pendry J B. Controlling electromagnetic fields. Science. 312(5781), 1780-1782(2006).

【12】Leonhardt U. Optical conformal mapping. Science. 312(5781), 1777-1780(2006).

【13】Engheta N. Thin absorbing screens using metamaterial surfaces. [C]//IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), June 16-21, 2002, San Antonio, TX, USA. New York: IEEE. 392-395(2002).

【14】Tretyakov S A and Maslovski S I. Thin absorbing structure for all incidence angles based on the use of a high-impedance surface. Microwave and Optical Technology Letters. 38(3), 175-178(2003).

【15】Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber. Physical Review Letters. 100(20), (2008).

【16】Landy N I, Bingham C M, Tyler T et al. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B. 79(12), (2009).

【17】Liu X L, Starr T, Starr A F et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters. 104(20), (2010).

【18】Hao J M, Yuan Y, Ran L X et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Physical Review Letters. 99(6), (2007).

【19】Sun W J, He Q, Hao J M et al. A transparent metamaterial to manipulate electromagnetic wave polarizations. Optics Letters. 36(6), 927-929(2011).

【20】Yu N, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 334(6054), 333-337(2011).

【21】Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials. 11(5), 426-431(2012).

【22】Ni X J, Emani N K, Kildishev A V et al. Broadband light bending with plasmonic nanoantennas. Science. 335(6067), (2012).

【23】Sun S L, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters. 12(12), 6223-6229(2012).

【24】Kildishev A V, Boltasseva A and Shalaev V M. Planar photonics with metasurfaces. Science. 339(6125), (2013).

【25】Memarzadeh B and Mosallaei H. Array of planar plasmonic scatterers functioning as light concentrator. Optics Letters. 36(13), 2569-2571(2011).

【26】Aieta F, Genevet P, Kats M A et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Letters. 12(9), 4932-4936(2012).

【27】Pors A, Nielsen M G, Eriksen R L et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Letters. 13(2), 829-834(2013).

【28】Pors A, Albrektsen O, Radko I P et al. Gap plasmon-based metasurfaces for total control of reflected light. Scientific Reports. 3, (2013).

【29】Pors A, Nielsen M G, Bernardin T et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons. Light: Science & Applications. 3(8), (2014).

【30】Castellanos-Beltran M A, Irwin K D, Hilton G C et al. . Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Physics. 4(12), 929-931(2008).

【31】L hteenm ki P, Paraoanu G S, Hassel J et al. Dynamical Casimir effect in a Josephson metamaterial. Proceedings of the National Academy of Sciences. 110(11), 4234-4238(2013).

【32】Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Science & Applications. 3(10), (2014).

【33】Pu M B, Chen P, Wang C T et al. Broadband anomalous reflection based on gradient low-Q meta-surface. AIP Advances. 3(5), (2013).

【34】Li X, Xiao S Y, Cai B G et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Optics Letters. 37(23), 4940-4942(2012).

【35】Guo Y H, Wang Y Q, Pu M B et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion. Scientific Reports. 5, (2015).

【36】Bomzon Z, Biener G, Kleiner V et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Optics Letters. 27(13), 1141-1143(2002).

【37】Shitrit N, Bretner I, Gorodetski Y et al. Optical spin Hall effects in plasmonic chains. Nano Letters. 11(5), 2038-2042(2011).

【38】Yin X, Ye Z, Rho J et al. Photonic spin Hall effect at metasurfaces. Science. 339(6126), 1405-1407(2013).

【39】Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface. Nature Communications. 4, (2013).

【40】Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency. Nature Nanotechnology. 10(4), 308-312(2015).

【41】Khorasaninejad M, Ambrosio A, Kanhaiya P et al. Broadband and chiral binary dielectric meta-holograms. Science Advances. 2(5), (2016).

【42】Huang K, Dong Z G, Mei S T et al. Silicon multi-meta-holograms for the broadband visible light. Laser & Photonics Reviews. 10(3), 500-509(2016).

【43】Wen D D, Yue F Y, Li G X et al. Helicity multiplexed broadband metasurface holograms. Nature Communications. 6, (2015).

【44】Li X, Chen L W, Li Y et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Science Advances. 2(11), (2016).

【45】Song E Y, Lee S Y, Hong J et al. A double-lined metasurface for plasmonic complex-field generation. Laser & Photonics Reviews. 10(2), 299-306(2016).

【46】Li L, Li T, Wang S M et al. Plasmonic Airy beam generated by in-plane diffraction. Physical Review Letters. 107(12), (2011).

【47】Zhou J X, Liu Y C, Ke Y G et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases. Optics Letters. 40(13), 3193-3196(2015).

【48】Song E Y, Lee G Y, Park H et al. Compact generation of Airy beams with C-aperture metasurface. Advanced Optical Materials. 5(10), (2017).

【49】Aieta F, Kats M A, Genevet P et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science. 347(6228), 1342-1345(2015).

【50】Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices. Nature Communications. 8, (2017).

【51】Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible. Nature Nanotechnology. 13(3), 227-232(2018).

【52】Miao Z Q, Wu Q, Li X et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces. Physical Review X. 5(4), (2015).

【53】Zhang L, Chen X Q, Liu S et al. Space-time-coding digital metasurfaces. Nature Communications. 9, (2018).

【54】Pancharatnam S. Generalized theory of interference, and its applications. Proceedings of the Indian Academy of Sciences - Section A. 44(5), 247-262(1956).

【55】Berry M V. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 392(1802), 45-57(1984).

【56】Kang M, Feng T H, Wang H T et al. Wave front engineering from an array of thin aperture antennas. Optics Express. 20(14), 15882-15890(2012).

【57】Huang L L, Chen X Z, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation. Nano Letters. 12(11), 5750-5755(2012).

【58】Ling X H, Zhou X X, Yi X N et al. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light: Science & Applications. 4(5), (2015).

【59】Biener G, Niv A, Kleiner V et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements. Optics Letters. 27(21), 1875-1877(2002).

【60】Hasman E, Bomzon Z, Niv A et al. Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures. Optics Communications. 209(1/2/3), 45-54(2002).

【61】Chen X Z, Huang L L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light. Nature Communications. 3, (2012).

【62】Lin D, Fan P, Hasman E et al. Dielectric gradient metasurface optical elements. Science. 345(6194), 298-302(2014).

【63】Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 352(6290), 1190-1194(2016).

【64】Luo X G, Pu M B, Li X et al. Broadband spin Hall effect of light in single nanoapertures. Light: Science & Applications. 6(6), (2017).

【65】Berkhout G C G, Lavery M P J, Courtial J et al. . Efficient sorting of orbital angular momentum states of light. Physical Review Letters. 105(15), (2010).

【66】Mair A, Vaziri A, Weihs G et al. Entanglement of the orbital angular momentum states of photons. Nature. 412(6844), 313-316(2001).

【67】Beijersbergen M W. Allen L, van der Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communications. 96(1/2/3), 123-132(1993).

【68】Niv A, Gorodetski Y, Kleiner V et al. Topological spin-orbit interaction of light in anisotropic inhomogeneous subwavelength structures. Optics Letters. 33(24), 2910-2912(2008).

【69】Karimi E. Schulz S A, de Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light: Science & Applications. 3(5), (2014).

【70】Genevet P, Yu N F, Aieta F et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Applied Physics Letters. 100(1), (2012).

【71】Chimento P F. Alkemade P F A, Hooft G W, et al. Optical angular momentum conversion in a nanoslit. Optics Letters. 37(23), 4946-4948(2012).

【72】Guo Y H, Pu M B, Zhao Z Y et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics. 3(11), 2022-2029(2016).

【73】Lu B R, Deng J N, Li Q et al. Reconstructing a plasmonic metasurface for a broadband high-efficiency optical vortex in the visible frequency. Nanoscale. 10(26), 12378-12385(2018).

【74】Pu M B, Li X, Ma X L et al. Catenary optics for achromatic generation of perfect optical angular momentum. Science Advances. 1(9), (2015).

【75】Ma X L, Pu M B, Li X et al. A planar chiral meta-surface for optical vortex generation and focusing. Scientific Reports. 5, (2015).

【76】Yue F Y, Wen D D, Xin J T et al. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics. 3(9), 1558-1563(2016).

【77】Arbabi A and Faraon A. Fundamental limits of ultrathin metasurfaces. Scientific Reports. 7, (2017).

【78】Ding X M, Monticone F, Zhang K et al. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency. Advanced Materials. 27(7), 1195-1200(2015).

【79】Pfeiffer C and Grbic A. Controlling vector Bessel beams with metasurfaces. Physical Review Applied. 2(4), (2014).

【80】Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science. 340(6138), 1304-1307(2013).

【81】Luo W J, Xiao S Y, He Q et al. Photonic spin Hall effect with nearly 100% efficiency. Advanced Optical Materials. 3(8), 1102-1108(2015).

【82】Jiang S C, Xiong X, Hu Y S et al. High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection. Physical Review B. 91(12), (2015).

【83】Xiao S Y, He Q, Huang X Q et al. Super imaging with a plasmonic metamaterial: role of aperture shape. Metamaterials. 5(2/3), 112-118(2011).

【84】Luo W J, Sun S L, Xu H X et al. Transmissive ultrathin Pancharatnam-Berry metasurfaces with nearly 100% efficiency. Physical Review Applied. 7(4), (2017).

【85】Mei Q Q, Tang W X and Cui T J. A broadband Bessel beam launcher using metamaterial lens. Scientific Reports. 5, (2015).

【86】Monnai Y, Jahn D, Withayachumnankul W et al. Terahertz plasmonic Bessel beamformer. Applied Physics Letters. 106(2), (2015).

【87】Cai B G, Li Y B, Jiang W X et al. Generation of spatial Bessel beams using holographic metasurface. Optics Express. 23(6), 7593-7601(2015).

【88】Gao L H, Cheng Q, Yang J et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light: Science & Applications. 4(9), (2015).

【89】Berini P. Long-range surface plasmon polaritons. Advances in Optics and Photonics. 1(3), 484-588(2009).

【90】Barnes W L, Dereux A and Ebbesen T W. Surface plasmon subwavelength optics. Nature. 424(6950), 824-830(2003).

【91】Kim S, Jin J, Kim Y J et al. High-harmonic generation by resonant plasmon field enhancement. Nature. 453(7196), 757-760(2008).

【92】Kauranen M and Zayats A V. Nonlinear plasmonics. Nature Photonics. 6(11), 737-748(2012).

【93】Nie S M and Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 275(5303), 1102-1106(1997).

【94】Anker J N, Hall W P, Lyandres O et al. Biosensing with plasmonic nanosensors. Nature Materials. 7(6), 442-453(2008).

【95】Zhang S P, Bao K, Halas N J et al. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Letters. 11(4), 1657-1663(2011).

【96】Gramotnev D K and Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics. 4(2), 83-91(2010).

【97】Liu L, Han Z H and He S L. Novel surface plasmon waveguide for high integration. Optics Express. 13(17), 6645-6650(2005).

【98】Bozhevolnyi S I, Volkov V S, Devaux E et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature. 440(7083), 508-511(2006).

【99】Gorodetski Y, Nechayev S, Kleiner V et al. Plasmonic Aharonov-Bohm effect: optical spin as the magnetic flux parameter. Physical Review B. 82(12), (2010).

【100】Bliokh K Y, Gorodetski Y, Kleiner V et al. Coriolis effect in optics: unified geometric phase and spin-Hall effect. Physical Review Letters. 101(3), (2008).

【101】Gorodetski Y, Niv A, Kleiner V et al. Observation of the spin-based plasmonic effect in nanoscale structures. Physical Review Letters. 101(4), (2008).

【102】Cho S W, Park J, Lee S Y et al. Coupling of spin and angular momentum of light in plasmonic vortex. Optics Express. 20(9), 10083-10094(2012).

【103】Kim H, Park J, Cho S W et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Letters. 10(2), 529-536(2010).

【104】Gorodetski Y, Shitrit N, Bretner I et al. Observation of optical spin symmetry breaking in nanoapertures. Nano Letters. 9(8), 3016-3019(2009).

【105】Ohno T and Miyanishi S. Study of surface plasmon chirality induced by Archimedes’ spiral grooves. Optics Express. 14(13), 6285-6290(2006).

【106】Yang S Y, Chen W B, Nelson R L et al. Miniature circular polarization analyzer with spiral plasmonic lens. Optics Letters. 34(20), 3047-3049(2009).

【107】Shen Z, Hu Z J, Yuan G H et al. Visualizing orbital angular momentum of plasmonic vortices. Optics Letters. 37(22), 4627-4629(2012).

【108】Tsai W Y, Huang J S and Huang C B. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral. Nano Letters. 14(2), 547-552(2014).

【109】Ku C T, Lin H N and Huang C B. Direct observation of surface plasmon vortex and subwavelength focusing with arbitrarily-tailored intensity patterns. Applied Physics Letters. 106(5), (2015).

【110】Mueller J P B and Capasso F. Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface. Physical Review B. 88(12), (2013).

【111】Lin J. Mueller J P B, Wang Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science. 340(6130), 331-334(2013).

【112】Genevet P, Wintz D, Ambrosio A et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nature Nanotechnology. 10(9), 804-809(2015).

【113】Du L P, Kou S S, Balaur E et al. Broadband chirality-coded meta-aperture for photon-spin resolving. Nature Communications. 6, (2015).

【114】Huang L L, Chen X Z, Bai B F et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light: Science & Applications. 2(3), (2013).

【115】Dahan N, Gorodetski Y, Frischwasser K et al. Geometric Doppler effect: spin-split dispersion of thermal radiation. Physical Review Letters. 105(13), (2010).

【116】Shitrit N, Maayani S, Veksler D et al. Rashba-type plasmonic metasurface. Optics Letters. 38(21), 4358-4361(2013).

【117】Shitrit N, Yulevich I, Maguid E et al. Spin-optical metamaterial route to spin-controlled photonics. Science. 340(6133), 724-726(2013).

【118】Shitrit N, Yulevich I, Kleiner V et al. Spin-controlled plasmonics via optical Rashba effect. Applied Physics Letters. 103(21), (2013).

【119】Yulevich I, Maguid E, Shitrit N et al. Optical mode control by geometric phase in quasicrystal metasurface. Physical Review Letters. 115(20), (2015).

【120】Xiao S Y, Zhong F, Liu H et al. Flexible coherent control of plasmonic spin-Hall effect. Nature Communications. 6, (2015).

【121】Zhang Z J, Luo J, Song M W et al. Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography. Applied Physics Letters. 107(24), (2015).

【122】Kim J Y, Kim H, Kim B H et al. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nature Communications. 7, (2016).

【123】Chen W X, Tymchenko M, Gopalan P et al. Large-area nanoimprinted colloidal Au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces. Nano Letters. 15(8), 5254-5260(2015).

【124】Huang Y W, Chen W T, Tsai W Y et al. Aluminum plasmonic multicolor meta-hologram. Nano Letters. 15(5), 3122-3127(2015).

【125】Montelongo Y. Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms. Proceedings of the National Academy of Sciences. 111(35), 12679-12683(2014).

【126】Zhang X H, Jin J J, Wang Y Q et al. Metasurface-based broadband hologram with high tolerance to fabrication errors. Scientific Reports. 6, (2016).

【127】Chen W T, Yang K Y, Wang C M et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Letters. 14(1), 225-230(2014).

【128】Genevet P and Capasso F. Holographic optical metasurfaces: a review of current progress. Reports on Progress in Physics. 78(2), (2015).

【129】Torner L, Torres J P and Carrasco S. Digital spiral imaging. Optics Express. 13(3), 873-881(2005).

【130】Monroe D. Focus: big twist for electron beam. Physics. 8, (2015).

【131】Oemrawsingh S S R, Eliel E R et al. . Production and characterization of spiral phase plates for optical wavelengths. Applied Optics. 43(3), 688-694(2004).

【132】Chen L X, Lei J J and Romero J. Quantum digital spiral imaging. Light: Science & Applications. 3(3), (2014).

【133】Ghai D P, Senthilkumaran P and Sirohi R S. Single-slit diffraction of an optical beam with phase singularity. Optics and Lasers in Engineering. 47(1), 123-126(2009).

【134】Leach J, Padgett M J, Barnett S M et al. Measuring the orbital angular momentum of a single photon. Physical Review Letters. 88(25), (2002).

【135】Pors A, Nielsen M G and Bozhevolnyi S I. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica. 2(8), 716-723(2015).

【136】Wen D D, Yue F Y, Kumar S et al. Metasurface for characterization of the polarization state of light. Optics Express. 23(8), 10272-10281(2015).

【137】Genevet P, Lin J, Kats M A et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nature Communications. 3, (2012).

【138】Liu A P, Rui G H, Ren X F et al. Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens. Optics Express. 20(22), 24151-24159(2012).

【139】Yang Y M, Wang W Y, Moitra P et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Letters. 14(3), 1394-1399(2014).

【140】Xu H X, Ma S J, Luo W J et al. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces. Applied Physics Letters. 109(19), (2016).

【141】Li L L, Cui T J, Ji W et al. Electromagnetic reprogrammable coding-metasurface holograms. Nature Communications. 8, (2017).

【142】Chen K, Feng Y J, Monticone F et al. A reconfigurable active Huygens'''' metalens. Advanced Materials. 29(17), (2017).

【143】Qu C, Ma S J, Hao J M et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Physical Review Letters. 115(23), (2015).

【144】Xu H X, Wang G M, Cai T et al. Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection. Optics Express. 24(24), 27836-27848(2016).

【145】Kim T T, Kim H, Kenney M et al. Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces. Advanced Optical Materials. 6(1), (2018).

【146】Zhu W M, Song Q H, Yan L B et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial. Advanced Materials. 27(32), 4739-4743(2015).

【147】Balthasar Mueller J P, Rubin N A, Devlin R C et al. . Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters. 118(11), (2017).

【148】Zhang F, Pu M B, Luo J et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces. Opto-Electronic Engineering. 44(3), 319-325(2017).

【149】Zhang F, Pu M B, Li X et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Advanced Functional Materials. 27(47), (2017).

引用该论文

Hu Zhong,Xu Tao,Tang Rong,Guo Huijie,Xiao Shiyi. Geometric-Phase Metasurfaces: from Physics to Applications[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202408

胡中,徐涛,汤蓉,郭会杰,肖诗逸. 几何相位电磁超表面:从原理到应用[J]. 激光与光电子学进展, 2019, 56(20): 202408

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF