Photonics Research, 2020, 8 (4): 04000534, Published Online: Mar. 24, 2020  

Laser-induced rotary micromotor with high energy conversion efficiency Download: 584次

Author Affiliations
1 Key Laboratory of In-fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin 150001, China
2 National Demonstration Center for Experimental Physics Education, Harbin Engineering University, Harbin 150001, China
3 Photonics Research Center, Guilin University of Electronics Technology, Guilin 541004, China
4 e-mail: liuzhihai@hrbeu.edu.cn
Abstract
Light is a precious resource that nature has given to human beings. Converting green, recyclable light energy into the mechanical energy of a micromotor is undoubtedly an exciting challenge. However, the performance of current light-induced micromotor devices is unsatisfactory, as the light-to-work conversion efficiency is only 10?1510?12. In this paper, we propose and demonstrate a laser-induced rotary micromotor operated by Δα-type photopheresis in pure liquid glycerol, whose energy conversion ratio reaches as high as 10?9, which is 3–6 orders of magnitude higher than that of previous light-induced micromotor devices. In addition, we operate the micromotor neither with a light field carrying angular momentum nor with a rotor with a special rotating symmetrical shape. We just employ an annular-core fiber to configure a conical-shaped light field and select a piece of graphite sheet (with an irregular shape) as the micro-rotor. The Δα-type photophoretic force introduced by the conical-shaped light field drives the rotation of the graphite sheet. We achieve a rotation rate up to 818.2 r/min, which can be controlled by tuning the incident laser power. This optical rotary micromotor is available for twisting macromolecules or generating vortex and shear force in a medium at the nanoscale.

Yu Zhang, Siyu Lin, Zhihai Liu, Yaxun Zhang, Jianzhong Zhang, Jun Yang, Libo Yuan. Laser-induced rotary micromotor with high energy conversion efficiency[J]. Photonics Research, 2020, 8(4): 04000534.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!