首页 > 论文 > 中国激光 > 47卷 > 7期(pp:701001--1)

通信波段半导体分布反馈激光器 (特邀综述) (内封面文章)

Review of Semiconductor Distributed Feedback Lasers in the Optical Communication Band (Invited) (Inner Cover Paper)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

半导体分布反馈(DFB)激光器以其卓越的光谱特性、调制特性以及低成本、可量产优势已经成为光纤通信、空间光通信中的重要光源,并将在5G、数据中心、激光雷达以及微波光子学等应用中发挥不可替代的作用。针对通信波段半导体DFB激光器的不同应用需求及特征展开综述,分别就直接调制DFB激光器、大功率DFB激光器以及低噪声(窄线宽及低相对强度噪声)DFB激光器的设计原理、优化方法及进展进行了整理、评述与展望。

Abstract

Semiconductor distributed feedback (DFB) laser has become a key component in optical fiber communication and free-space optical communication due to its excellent spectral characteristics, modulation characteristics, as well as the low cost and volume-production characteristics, which will play an irreplaceable role in a variety of applications such as 5G, data center and microwave photonics. This paper reviews the DFB lasers in the optical communication band based on their applications and characteristics. The principle and recent progress of diverse DFB lasers are introduced and reviewed respectively, including high speed directly modulated DFB laser, high power DFB laser, and low noise (narrow linewidth and low relative intensity noise) DFB laser.

广告组5 - 光束分析仪
补充资料

中图分类号:TN365

DOI:10.3788/CJL202047.0701001

所属栏目:“半导体激光器”专题

基金项目:国家重点研发计划、国家自然科学基金;

收稿日期:2020-02-24

修改稿日期:2020-04-13

网络出版日期:2020-07-01

作者单位    点击查看

陆丹:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049低维半导体材料与器件北京市重点实验室, 北京 100083
杨秋露:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049低维半导体材料与器件北京市重点实验室, 北京 100083
王皓:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049低维半导体材料与器件北京市重点实验室, 北京 100083
贺一鸣:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049低维半导体材料与器件北京市重点实验室, 北京 100083
齐合飞:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049低维半导体材料与器件北京市重点实验室, 北京 100083
王欢:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049低维半导体材料与器件北京市重点实验室, 北京 100083
赵玲娟:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049低维半导体材料与器件北京市重点实验室, 北京 100083
王圩:中国科学院半导体研究所半导体材料科学重点实验室, 北京 100083中国科学院大学材料与光电研究中心, 北京 100049低维半导体材料与器件北京市重点实验室, 北京 100083

联系人作者:陆丹(ludan@semi.ac.cn); 赵玲娟(ljzhao@semi.ac.cn);

备注:国家重点研发计划、国家自然科学基金;

【1】Hall R N, Fenner G, Kingsley J D, et al. Coherent light emission from GaAs junctions [J]. Physical Review Letters. 1962, 9(9): 366-368.

【2】Nathan M, Dumke W P, Burns G, et al. Stimulated emission of radiation from GaAs p-n junctions [J]. Applied Physics Letters. 1962, 1(3): 62-64.

【3】Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies [J]. Proceedings of the Institution of Electrical Engineers. 1966, 113(7): 1151-1158.

【4】Matsui Y, Schatz R, Pham T, et al. 55 GHz bandwidth distributed reflector laser [J]. Journal of Lightwave Technology. 2017, 35(3): 397-403.

【5】Sasada N, Nakajima T, Sekino Y, et al. Wide-temperature-range (25-80 ℃) 53-Gbaud PAM4 (106 Gb/s) operation of 1.3 μm directly modulated DFB lasers for 10 km transmission [J]. Journal of Lightwave Technology. 2019, 37(7): 1686-1689.

【6】Okai M, Suzuki M, Taniwatari T. Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6 kHz) spectral linewidth [J]. Electronics Letters. 1993, 29(19): 1696-1697.

【7】Doussiere P, Shieh C L. DeMars S, et al. Very high-power 1310 nm InP single mode distributed feed back laser diode with reduced linewidth [J]. Proceedings of SPIE. 2007, 6485: 64850G.

【8】Kogelnik H, Shank C V. Stimulated emission in a periodic structure [J]. Applied Physics Letters. 1971, 18(4): 152-154.

【9】Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers [J]. Journal of Applied Physics. 1972, 43(5): 2327-2335.

【10】Nakamura M, Yariv A, Yen H W, et al. Optically pumped GaAs surface laser with corrugation feedback [J]. Applied Physics Letters. 1973, 22(10): 515-516.

【11】Haus H, Shank C. Antisymmetric taper of distributed feedback lasers [J]. IEEE Journal of Quantum Electronics. 1976, 12(9): 532-539.

【12】Akiba S, Usami M, Utaka K. 1.5 μm λ/4-shifted InGaAsP/InP DFB lasers [J]. Journal of Lightwave Technology. 1987, 5(11): 1564-1573.

【13】Soda H, Kotaki Y, Sudo H, et al. Stability in single longitudinal mode operation in GaInAsP/InP phase-adjusted DFB lasers [J]. IEEE Journal of Quantum Electronics. 1987, 23(6): 804-814.

【14】Agrawal G P, Geusic J E, Anthony P J. Distributed feedback lasers with multiple phase‐shift regions [J]. Applied Physics Letters. 1988, 53(3): 178-179.

【15】Okai M, Chinone N, Taira H, et al. Corrugation-pitch-modulated phase-shifted DFB laser [J]. IEEE Photonics Technology Letters. 1989, 1(8): 200-201.

【16】Huang Y D, Sato K, Okuda T, et al. Low-chirp and external optical feedback resistant characteristics in λ/8 phase-shifted distributed-feedback laser diodes under direct modulation [J]. IEEE Journal of Quantum Electronics. 2002, 38(11): 1479-1484.

【17】Luo Y, Nakano Y, Tada K, et al. Purely gain-coupled distributed feedback semiconductor lasers [J]. Applied Physics Letters. 1990, 56(17): 1620-1622.

【18】Nakamura K, Miyamura S, Sekikawa R, et al. Optical feedback-tolerant 1.3 μm gain-coupled DFB lasers for isolator-free micro-BOSA modules[C]∥OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference. 25-29 March 2007, Anaheim, CA, USA. New York: , 2007, 1-3.

【19】Miller L M, Verdeyen J T, Coleman J J, et al. A distributed feedback ridge waveguide quantum well heterostructure laser [J]. IEEE Photonics Technology Letters. 1991, 3(1): 6-8.

【20】Guo W H, Lu Q Y, Nawrocka M, et al. Integrable slotted single-mode lasers [J]. IEEE Photonics Technology Letters. 2012, 24(8): 634-636.

【21】Coldren L A, Corzine S W, Ma?anovic M L. Diode lasers and photonic integrated circuits [M]. Hoboken, NJ, USA: John Wiley & Sons, Inc. 2012.

【22】Thibeault B J, Bertilsson K, Hegblom E R, et al. High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers [J]. IEEE Photonics Technology Letters. 1997, 9(1): 11-13.

【23】Tatham M C, Lealman I F, Seltzer C P, et al. Resonance frequency, damping, and differential gain in 1.5 μm multiple quantum-well lasers [J]. IEEE Journal of Quantum Electronics. 1992, 28(2): 408-414.

【24】Fukamachi T, Adachi K, Shinoda K, et al. Wide temperature range operation of 25-Gb/s 1.3 μm InGaAlAs directly modulated lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2011, 17(5): 1138-1145.

【25】Yamamoto T. High-speed directly modulated lasers . [C]∥Optical Fiber Communication Conference. Washington, D.C.: OSA. 2012.

【26】Morton P A, Logan R A, Tanbun-Ek T, et al. 25 GHz bandwidth 1.55 μm GaInAsP p-doped strained multiquantum-well lasers [J]. Electronics Letters. 1992, 28(23): 2156.

【27】Shimizu J, Yamada H, Murata S, et al. Optical-confinement-factor dependencies of the K factor, differential gain, and nonlinear gain coefficient for 1.55 μm InGaAs/InGaAsP MQW and strained-MQW lasers [J]. IEEE Photonics Technology Letters. 1991, 3(9): 773-776.

【28】Chiu L, Yariv A. Auger recombination in quantum-well InGaAsP heterostructure lasers [J]. IEEE Journal of Quantum Electronics. 1982, 18(10): 1406-1409.

【29】Childs G N, Brand S, Abram R A. Intervalence band absorption in semiconductor laser materials [J]. Semiconductor Science and Technology. 1986, 1(2): 116-120.

【30】Matsui Y, Murai H, Arahira S, et al. 30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser [J]. IEEE Photonics Technology Letters. 1997, 9(1): 25-27.

【31】Tsuchiya T, Takemoto D, Taike A, et al. Large number of periods in highly strained InGaAlAs/InGaAlAs MQW structures grown by metalorganic vapor-phase epitaxy[C]∥Conference Proceedings. Eleventh International Conference on Indium Phosphide and Related Materials (IPRM''''99) (Cat. No.99CH36362). 16-20 May 1999, Davos, Switzerland. New York: , 1999, 47-50.

【32】Lu H, Blaauw C, Benyon B, et al. High-power and high-speed performance of gain-coupled 1.3 μm strained-layer MQW DFB lasers[C]∥Proceedings of IEEE 14th International Semiconductor Laser Conference. 19-23 Sept. 1994, Maui, HI, USA. New York: , 1994, 51-52.

【33】Nakahara K, Wakayama Y, Kitatani T, et al. 1.3 μm InGaAlAs asymmetric corrugationpitch- modulated DFB lasers with high mask margin at 28 Gbit/S [J]. Electronics Letters. 2014, 50(13): 947-948.

【34】Chang F. Datacenter connectivity technologies: principles and practice [M]. Denmark: River Publishers. 2018.

【35】Matsui Y, Li W, Roberts H, et al. Transceiver for NG-. PON2: , 2016, 1-3.

【36】Wang D L, Zhou N, Zhang J, et al. High-temperature and high-speed operation of 1.3 μm uncooled AlGaInAs-InP MQW-DFB lasers [J]. Proceedings of SPIE. 2005, 6020: 60201U.

【37】Shim J I, Komori K, Arai S, et al. Lasing characteristics of 1.5 μm GaInAsP-InP SCH-BIG-DR lasers [J]. IEEE Journal of Quantum Electronics. 1991, 27(6): 1736-1745.

【38】Yamamoto T, Uetake A, Otsubo K, et al. Uncooled 40-Gbps direct modulation of 1.3-μm-wavelength AlGaInAs distributed reflector lasers with semi-insulating buried-heterostructure[C]∥22nd IEEE International Semiconductor Laser Conference. 26-30 Sept. 2010, Kyoto, Japan. New York: , 2010, 193-194.

【39】Nakahara K, Wakayama Y, Kitatani T, et al. Directmodulation at 56 and 50 Gb/s of 1.3 μm InGaAlAs ridge-shaped-BH DFB lasers [J]. IEEE Photonics Technology Letters. 2015, 27(5): 534-536.

【40】Simoyama T, Matsuda M, Okumura S, et al. 50 Gbps direct modulation using 1.3 μm AlGaInAs MQW distribute-reflector lasers[C]∥2012 38th European Conference and Exhibition on Optical Communications. 16-20 Sept. 2012, Amsterdam, Netherlands. New York: , 2012, 1-3.

【41】Kobayashi W, Ito T, Yamanaka T, et al. 50-Gb/s direct modulation of a 1.3 μm InGaAlAs-based DFB laser with a ridge waveguide structure [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2013, 19(4): 1500908.

【42】Tager A A, Petermann K. High-frequency oscillations and self-mode locking in short external-cavity laser diodes [J]. IEEE Journal of Quantum Electronics. 1994, 30(7): 1553-1561.

【43】Radziunas M, Glitzky A, Bandelow U, et al. Improving the modulation bandwidth in semiconductor lasers by passive feedback [J]. IEEE Journal of Selected Topics in Quantum Electronics. 2007, 13(1): 136-142.

【44】Bauer S, Brox O, Kreissl J, et al. Optical microwave source [J]. Electronics Letters. 2002, 38(7): 334-335.

【45】Brox O, Bauer S, Radziunas M, et al. High-frequency pulsations in DFB lasers with amplified feedback [J]. IEEE Journal of Quantum Electronics. 2003, 39(11): 1381-1387.

【46】Troppenz U, Kreissl J, et al. 40 Gbit/s directly modulated lasers: physics and application [J]. Proceedings of SPIE. 2011, 7953: 79530F.

【47】Yu L Q, Guo L, Lu D, et al. Modulated bandwidth enhancement in an amplified feedback laser [J]. Chinese Optics Letters. 2015, 13(5): 051401.

【48】Mao Y F, Ren Z L, Guo L, et al. Modulation bandwidth enhancement in distributed reflector laser based on identical active layer approach [J]. IEEE Photonics Journal. 2018, 10(3): 1-8.

【49】Guo F. Investigation of monolithically integrated high-speed photonic chip for next generation datacom applications [D]. Beijing: University of Chinese Academy of Sciences. 2016.
郭菲. 应用于下一代数据中心的单片集成高速光发射芯片的研究 [D]. 北京: 中国科学院大学. 2016.

【50】Wang H. Research on high performance high speed directly modulated DFB laser and high power DFB laser [D]. Beijing: University of Chinese Academy of Sciences. 2019.
王皓. 高性能高速直调激光器与大功率DFB激光器的研究 [D]. 北京: 中国科学院大学. 2019.

【51】Chen T R, Ungar J, Yeh X L, et al. Very large bandwidth strained MQW DFB laser at 1.3 μm [J]. IEEE Photonics Technology Letters. 1995, 7(5): 458-460.

【52】Steinhagen F, L?sch R, Hartnagel H L, et al. AlGaInAs/InP 1.5 μm MQW DFB laser diodes exceeding 20 GHz bandwidth [J]. Electronics Letters. 1995, 31(4): 274-275.

【53】Troppenz U, Kreissl J. 40 Gb/s directly modulated InGaAsP passive feedback DFB laser . [C]∥32nd European Conference and Exhibition on Optical Communications (ECOC), Sep. 24-28, Cannes France. New York: IEEE. 2006, 2-3.

【54】Xie L, Man J W, Wang B J, et al. 24-GHz directly modulated DFB laser modules for analog applications [J]. IEEE Photonics Technology Letters. 2012, 24(5): 407-409.

【55】Matsui Y, Pham T, Sudo T, et al. 28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310 nm Al-BH DFB laser [J]. Journal of Lightwave Technology. 2016, 34(11): 2677-2683.

【56】Slipchenko S O, Vinokurov D A, Pikhtin N A, et al. Ultralow internal optical loss in separate-confinement quantum-well laser heterostructures [J]. Semiconductors. 2004, 38(12): 1430-1439.

【57】Garbuzov D, Xu L, Forrest S R, et al. 1.5 μm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power [J]. Electronics Letters. 1996, 32(18): 1717-1719.

【58】Chen T R, Hsin W. Very high power DFB CW light source at 1550 nm for high-performance supertrunking [J]. Proceedings of SPIE. 1998, 3547: 24-36.

【59】Shterengas L, Menna R, Trussell W, et al. Effect of heterobarrier leakage on the performance of high-power 1.5 μm InGaAsP multiple-quantum-well lasers [J]. Journal of Applied Physics. 2000, 88(5): 2211-2214.

【60】Han I K, Cho S H. Heim P J S, et al. Dependence of the light-current characteristics of 1.55 μm broad-area lasers on different p-doping profiles [J]. IEEE Photonics Technology Letters. 2000, 12(3): 251-253.

【61】Yong Y S, Wong H Y, Yow H K, et al. Systematic study on the confinement structure design of 1.5 μm InGaAlAs/InP multiple-quantum-well lasers [J]. Laser Physics. 2010, 20(4): 811-815.

【62】Nagashima Y, Onuki S, Shimose Y, et al. 1480 nm pump laser with asymmetric quaternary cladding structure achieving high output power of >1.2 W with low power consumption[C]∥2004 IEEE 19th International Semiconductor Laser Conference. 21-25 Sept. 2004, Matsue-shi, Japan. New York: , 2004, 47-48.

【63】Shih M H, Kapre R M, Logan R A, et al. Alignment-relaxed 1.55 μm multiquantum well lasers fabricated using standard buried heterostructure laser processes [J]. Electronics Letters. 1995, 31(13): 1058-1060.

【64】Faugeron M, Tran M, Parillaud O, et al. High-power tunable dilute mode DFB laser with low RIN and narrow linewidth [J]. IEEE Photonics Technology Letters. 2013, 25(1): 7-10.

【65】Borchert B. Spatial hole-burning effects in distributed-feedback semiconductor lasers [J]. Proceedings of SPIE. 1992, 1523: 194-199.

【66】Stegmüller B, Borchert T, et al. Complex coupled distributed feedback lasers: structures and recent progress in performance . [C]∥Conference on Lasers and Electro-Optics, May 21-26, 1995, Baltimore, Maryland, United States. Washington: Optical Society of America. 1995, CThK1.

【67】Whiteaway J E A, Thompson G H B, Collar A J, et al. The design assessment of λ/4 phase-shifted DFB laser structures [J]. IEEE Journal of Quantum Electronics. 1989, 25(6): 1261-1279.

【68】Wenzel H, Bugge F, Dallmer M, et al. Fundamental-lateral mode stabilized high-power ridge-waveguide lasers with a low beam divergence [J]. IEEE Photonics Technology Letters. 2008, 20(3): 214-216.

【69】Menna R, Komissarov A, Maiorov M, et al. High power 1550 nm distributed feedback lasers with 440 mW CW output power for telecommunication applications[C]∥Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest (IEEE Cat. No.01CH37170). 11-11 May 2001, Baltimore, MD, USA. New York: , 0.

【70】Garbuzov D Z, Maiorov M A, Menna R J, et al. High-power 1300-nm Fabry-Perot and DFB ridge-waveguide lasers [J]. Proceedings of SPIE. 2002, 4651: 92-100.

【71】Wang H, Zhang R K, Kan Q, et al. High-power wide-bandwidth 1.55-μm directly modulated DFB lasers for free space optical communications . [C]∥Conference on Lasers and Electro-Optics. Washington, D.C.: OSA. 2019.

【72】Chen T R, Ungar J, Iannelli J, et al. High power operation of InGaAsP/InP multiquantum well DFB lasers at 1.55 μm wavelength [J]. Electronics Letters. 1996, 32(10): 898.

【73】Sugg A R, Abeles J H, Braun A M, et al. Design and characterization of 200-mW-class distributed feedback lasers at 1.55 μm[C]∥Conference Proceedings. 2000 International Conference on Indium Phosphide and Related Materials (Cat. No.00CH37107). 14-18 May 2000, Williamsburg, VA, USA. New York: , 2000, 282-285.

【74】Huang J, Lu H, Su H. Ultra-high power, 180 mW, 100 kHz. nm WDM+100 km long-haul transmission . [C]∥International Conference on Engineering and Meta-Engineering, Apr. 6-9, 2010, Orlando, FL, USA. Florida: Int Inst Informatics &. 1550, Systemics: 31-35.

【75】Kojima K, Kyuma K. Analysis of the spectral linewidth of distributed feedback laser diodes [J]. Electronics Letters. 1984, 20(21): 869-871.

【76】Liou K, Dutta N K, Burrus C. Linewidth‐narrowed distributed feedback injection lasers with long cavity length and detuned Bragg wavelength [J]. Applied Physics Letters. 1987, 50(9): 489-491.

【77】Kunii T, Matsui Y. Narrow spectral linewidth semiconductor lasers [J]. Optical and Quantum Electronics. 1992, 24(7): 719-735.

【78】Schawlow A L, Townes C H. Infrared and optical masers [J]. Physical Review. 1958, 112(6): 1940-1949.

【79】Fleming M W, Mooradian A. Fundamental line broadening of single-mode (GaAl)As diode lasers [J]. Applied Physics Letters. 1981, 38(7): 511-513.

【80】Henry C. Theory of the phase noise and power spectrum of a single mode injection laser [J]. IEEE Journal of Quantum Electronics. 1983, 19(9): 1391-1397.

【81】Yokouchi N, Yamanaka N, Iwai N, et al. Tensile-strained GaInAsP-InP quantum-well lasers emitting at 1.3 μm [J]. IEEE Journal of Quantum Electronics. 1996, 32(12): 2148-2155.

【82】Kikuchi K, Okoshi T. Measurement of FMnoise, AM noise, and field spectra of 1.3 μm InGaAsP DFB lasers and determination of the linewidth enhancement factor [J]. IEEE Journal of Quantum Electronics. 1985, 21(11): 1814-1818.

【83】Dutta N K, Wynn J D, Sivco D L, et al. Linewidth enhancement factor in strained quantum well lasers [J]. Applied Physics Letters. 1990, 56(23): 2293-2294.

【84】Aoki M, Uomi K, Tsuchiya T, et al. Quantum size effect on longitudinal spatial hole burning in MQW λ/4-shifted DFB lasers [J]. IEEE Journal of Quantum Electronics. 1991, 27(6): 1782-1789.

【85】Yamazaki H, Sasaki T, Kida N, et al. 250 kHz linewidth operation in long cavity 1.5 μm multiple quantum well DFB-LDs with reduced linewidth enhancement factor . [C]∥Optical Fiber Communication. Washington, D.C.: OSA. 1990.

【86】Kotaki Y, Fujii T, Ogita S, et al. Narrow linewidth and wavelength tunable multiple quantum well λ/4 shifted distributed feedback laser . [C]∥Optical Fiber Communication. Washington, D.C.: OSA. 1990.

【87】Pan X, Olesen H, Tromborg B. Linewidth and FM noise spectrum of DFB lasers including spatial holeburning and nonlinear gain[C]∥12th IEEE International Conference on Semiconductor Laser. 9-14 Sept. 1990, Davos, Switzerland. New York: , 1990, 118-119.

【88】Ogita S, Kotaki Y, Kihara K, et al. Dependence of spectral linewidth on cavity length and coupling coefficient in DFB laser [J]. Electronics Letters. 1988, 24(10): 613-614.

【89】Kojima K, Kyuma K, Nakayama T. Analysis of the spectral linewidth of distributed feedback laser diodes [J]. Journal of Lightwave Technology. 1985, 3(5): 1048-1055.

【90】Ogita S, Kotaki Y, Matsuda M, et al. Long-cavity, multiple-phase-shift, distributed feedback laser for linewidth narrowing [J]. Electronics Letters. 1989, 25(10): 629-630.

【91】Okai M, Tsuchiya T, Uomi K, et al. Corrugation-pitch modulated MQW-DFB lasers with narrow spectral linewidth [J]. IEEE Journal of Quantum Electronics. 1991, 27(6): 1767-1772.

【92】Telkk?l? J, Viheri?l? J, Bister M, et al. Narrow linewidth 1.55 μm laterally-coupled DFB lasers fabricated using nanoimprint lithography [J]. IPRM 2011-23rd International Conference on Indium Phosphide and Related Materials. 2011, 1-4.

【93】Hou L, Haji M, Akbar J, et al. Narrow linewidth laterally coupled 1.55 μm AlGaInAs/InP distributed feedback lasers integrated with a curved tapered semiconductor optical amplifier [J]. Optics Letters. 2012, 37(21): 4525-4527.

【94】Dridi K, Benhsaien A, Zhang J, et al. Narrow linewidth 1550 nm corrugated ridge waveguide DFB lasers [J]. IEEE Photonics Technology Letters. 2014, 26(12): 1192-1195.

【95】Kikuchi K. Precise estimation of linewidth reduction in wavelength-detuned DFB semiconductor lasers [J]. Electronics Letters. 1988, 24(2): 80-81.

【96】Ogita S, Hirano M, Soda H, et al. Dependence of spectrallinewidth of DFB lasers on facet reflectivity [J]. Electronics Letters. 1987, 23(7): 347.

【97】Zhao Y G, Luo X N, Tran D, et al. High-power and low-noise DFB semiconductor lasers for RF photonic links[C]∥IEEE Avionics. 11-13 Sept. 2012, Cocoa Beach, FL, USA. New York: , 2012, 66-67.

【98】Schreiner R, Wiedmann J, Coenning W, et al. Fabrication approach for antiphase narrow linewidth complex coupled 1.55 μm DFB lasers [J]. Electronics Letters. 1999, 35(2): 146-148.

【99】Huang J S, Su H, He X G, et al. Ultra-high power, low RIN and narrow linewidth lasers for C-band DWDM +100 km fiber optic link[C]∥IEEE Photonic Society 24th Annual Meeting. 9-13 Oct. 2011, Arlington, VA, USA. New York: , 2011, 212-213.

【100】Beuchet G, Mimoun M, et al. Ultra high power, ultra low RIN up to 20 GHz 1.55 μm DFB AlGaInAsP laser for analog applications [J]. Proceedings of SPIE. 2010, 7616: 76160Y.

【101】Faugeron M, Benazet B, Maho A, et al. High-performance DFB laser module for space applications: the FP7 HiPPO achievements from chip fabrication to system validation [J]. Proceedings of SPIE. 2019, 1118: 111803J.

引用该论文

Lu Dan,Yang Qiulu,Wang Hao,He Yiming,Qi Hefei,Wang Huan,Zhao Lingjuan,Wang Wei. Review of Semiconductor Distributed Feedback Lasers in the Optical Communication Band[J]. Chinese Journal of Lasers, 2020, 47(7): 0701001

陆丹,杨秋露,王皓,贺一鸣,齐合飞,王欢,赵玲娟,王圩. 通信波段半导体分布反馈激光器[J]. 中国激光, 2020, 47(7): 0701001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF