首页 > 论文 > 激光与光电子学进展 > 57卷 > 5期(pp:50001--1)

基于相干瑞利散射的分布式光纤声波传感技术 (封面文章) (特邀综述)

Distributed Optical Fiber Acoustic Sensing Technology Based on Coherent Rayleigh Scattering (Cover Paper) (Invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于相干瑞利散射的分布式光纤声波传感(DAS)技术可以实时获取光纤沿线各位置的振动和声场信息,具有传感范围大、时空精度高等独特优势,近年来得到了多个领域研究学者的广泛关注。论述了DAS的基本传感机理,概述了相干衰落抑制、响应带宽与空间分辨率提升等关键科学技术问题的研究进展,介绍了DAS在安防、铁路等领域的应用进展,并针对DAS技术未来可能的发展方向进行了评述与展望。

Abstract

Distributed optical fiber acoustic sensing (DAS) technology based on coherent Rayleigh scattering can obtain the vibration and sound field information along the optical fiber in real time. Recently, DAS has received extensive attention from scholars in many fields, due to its unique advantages such as large sensing range and high time-and-space resolution. In this paper, the fundamental sensing mechanism of DAS is introduced. The research progress on key scientific and technological issues, such as coherent fading suppression, response bandwidth enhancement, and spatial resolution optimization, is briefly reviewed. The application progress of DAS in perimeter security, rail transportation, and other fields is also described. Finally, the potential future research directions are discussed and speculated.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN29

DOI:10.3788/LOP57.050001

所属栏目:综述

基金项目:国家自然科学基金、国家重点研发项目、上海市自然基金、上海市科技委员会项目;

收稿日期:2020-01-20

修改稿日期:2020-02-12

网络出版日期:2020-03-01

作者单位    点击查看

蔡海文:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
叶青:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
王照勇:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049
卢斌:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学材料与光电研究中心, 北京 100049

联系人作者:蔡海文(hwcai@siom.ac.cn)

备注:国家自然科学基金、国家重点研发项目、上海市自然基金、上海市科技委员会项目;

【1】Fang Z J, Chin K K, Qu R H, et al. Fundamentals of optical fiber sensors [M]. Hoboken: John Wiley & Sons, Inc. 2012, 496.

【2】Barnoski M K, Jensen S M. Fiber waveguides: a novel technique for investigating attenuation characteristics [J]. Applied Optics. 1976, 15(9): 2112-2115.

【3】Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber [J]. Applied Physics Letters. 1981, 39(9): 693-695.

【4】Healey P, Malyon D. OTDR in single-mode fibre at 1.55 μm using heterodyne detection [J]. Electronics Letters. 1982, 18(20): 862-863.

【5】King J P, Smith D F, Richards K, et al. Development of a coherent OTDR instrument [J]. Journal of Lightwave Technology. 1987, 5(4): 616-624.

【6】Healey P. Fading rates in coherent OTDR [J]. Electronics Letters. 1984, 20(11): 443-444.

【7】Healey P. Fading in heterodyne OTDR [J]. Electronics Letters. 1984, 20(1): 30-32.

【8】Taylor H F, Lee C E. Apparatus. -03-16 [P]. method for fiber optic intrusion sensing: US005194847A. 1993.

【9】Ju?kaitis R, Mamedov A M, Potapov V T, et al. Interferometry with Rayleigh backscattering in a single-mode optical fiber [J]. Optics Letters. 1994, 19(3): 225-227.

【10】Juarez J C, Maier E W, Choi K N, et al. Distributed fiber-optic intrusion sensor system [J]. Journal of Lightwave Technology. 2005, 23(6): 2081-2087.

【11】Juarez J C, Taylor H F. Polarization discrimination in a phase-sensitive optical time-domain reflectometer intrusion-sensor system [J]. Optics Letters. 2005, 30(24): 3284-3286.

【12】Rao Y J, Luo J, Ran Z L, et al. Long-distance fiber-optic Φ-OTDR intrusion sensing system [J]. Proceedings of SPIE. 2009, 7503: 75031O.

【13】Pan Z Q, Liang K Z, Ye Q, et al. Phase-sensitive OTDR system based on digital coherent detection [J]. Proceedings of SPIE. 2011, 8311: 83110S.

【14】Wang Z Y. Study on key technologies of long-haul Φ-OTDR [D]. Shanghai: University of Chinese Academy of Sciences. 2017.
王照勇. 长距离Φ-OTDR关键技术研究 [D]. 上海: 中国科学院大学. 2017.

【15】Pouet B, Breugnot S, Clémenceau P. Robust laser-ultrasonic interferometer based on random quadrature demodulation [J]. AIP Conference Proceedings. 2006, 820: 233.

【16】Wang Z N, Zhang L, Wang S, et al. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection [J]. Optics Express. 2016, 24(2): 853-858.

【17】Dong Y K, Chen X, Liu E H, et al. Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer [J]. Applied Optics. 2016, 55(28): 7810-7815.

【18】Masoudi A, Belal M, Newson T P. A distributed optical fibre dynamic strain sensor based on phase-OTDR [J]. Measurement Science and Technology. 2013, 24(8): 085204.

【19】Wang C, Wang C, Shang Y, et al. Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry [J]. Optics Communications. 2015, 346: 172-177.

【20】Fang G S, Xu T W, Feng S W, et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm [J]. Journal of Lightwave Technology. 2015, 33(13): 2811-2816.

【21】Muanenda Y, Faralli S, Oton C J, et al. Dynamic phase extraction in a modulated double-pulse ?-OTDR sensor using a stable homodyne demodulation in direct detection [J]. Optics Express. 2018, 26(2): 687-701.

【22】Alekseev A E, Vdovenko V S, Gorshkov B G, et al. A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal [J]. Laser Physics. 2015, 25(6): 065101.

【23】Pan Z Q, Liang K Z, Zhou J, et al. Interference-fading-free phase-demodulated OTDR system [J]. Proceedings of SPIE. 2012, 8421: 842129.

【24】Muanenda Y, Faralli S, Oton C J, et al. Dynamic phase extraction in a modulated double-pulse ?-OTDR sensor using a stable homodyne demodulation in direct detection [J]. Optics Express. 2018, 26(2): 687-701.

【25】He X G, Liu F, Qin M Z, et al. Phase-sensitive optical time-domain reflectometry with heterodyne demodulation . [C]∥25th International Conference on Optical Fiber Sensors. 2017, 1-4.

【26】Wang Z N, Zhang B, Xiong J, et al. Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR [J]. IEEE Internet of Things Journal. 2019, 6(4): 6117-6124.

【27】Sha Z, Feng H, Zeng Z M. Phase demodulation method in phase-sensitive OTDR without coherent detection [J]. Optics Express. 2017, 25(5): 4831-4844.

【28】Zhou L, Wang F, Wang X C, et al. Distributed strain and vibration sensing system based on phase-sensitive OTDR [J]. IEEE Photonics Technology Letters. 2015, 27(17): 1884-1887.

【29】Pastor-Graells J, Martins H F, Garcia-Ruiz A, et al. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses [J]. Optics Express. 2016, 24(12): 13121-13133.

【30】Chen D, Liu Q W, He Z Y. Distributed fiber-optic acoustic sensor with sub-nano strain resolution based on time-gated digital OFDR . [C]∥Asia Communications and Photonics Conference, Guangzhou, Guangdong. Washington, D.C.: OSA. 2017, S4A: 2.

【31】Ren M Q, Lu P, Chen L, et al. Theoretical and experimental analysis of Φ-OTDR based on polarization diversity detection [J]. IEEE Photonics Technology Letters. 2016, 28(6): 697-700.

【32】Qin Z G, Zhu T, Chen L, et al. High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR [J]. IEEE Photonics Technology Letters. 2011, 23(15): 1091-1093.

【33】Gabai H, Eyal A. On the sensitivity of distributed acoustic sensing [J]. Optics Letters. 2016, 41(24): 5648-5651.

【34】Hartog A H, Liokumovich L B, Ushakov N A, et al. The use of multi-frequency acquisition to significantly improve the quality of fibre-optic-distributed vibration sensing [J]. Geophysical Prospecting. 2018, 66(S1): 192-202.

【35】Wang X, Lu B, Wang Z Y, et al. Interference-fading-free Φ-OTDR based on differential phase shift pulsing technology [J]. IEEE Photonics Technology Letters. 2019, 31(1): 39-42.

【36】Zhou J, Pan Z Q, Ye Q, et al. Characteristics and explanations of interference fading of a Φ-OTDR with a multi-frequency source [J]. Journal of Lightwave Technology. 2013, 31(17): 2947-2954.

【37】Hartog A, Liokumovich L B, Ushakov N A, et al. The use of multi-frequency acquisition to significantly improve the quality of fibre-optic distributed vibration sensing . [C]∥78th EAGE Conference and Exhibition 2016, May 30-June 2, 2016. Vienna, Austria. Netherlands: EAGE Publications BV. 2016, 192-202.

【38】Zhang J D, Wu H T, Zheng H, et al. 80 km fading free phase-sensitive reflectometry based on multi-carrier NLFM pulse without distributed amplification [J]. Journal of Lightwave Technology. 2019, 37(18): 4748-4754.

【39】Chen D, Liu Q W, He Z Y. Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR [J]. Optics Express. 2017, 25(7): 8315-8325.

【40】Alekseev A E, Vdovenko V S, Gorshkov B G, et al. Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber [J]. Laser Physics. 2016, 26(9): 095101.

【41】Pan Z Q, Wang Z Y, Ye Q, et al. High sampling rate multi-pulse phase-sensitive OTDR employing frequency division multiplexing [J]. Proceedings of SPIE. 2014, 9157: 91576X.

【42】Wang Z Y, Pan Z Q, Fang Z J, et al. Ultra-broadband phase-sensitive optical time-domain reflectometry with a temporally sequenced multi-frequency source [J]. Optics Letters. 2015, 40(22): 5192-5195.

【43】Iida D, Toge K, Manabe T. High-frequency distributed acoustic sensing faster than repetition limit with frequency-multiplexed phase-OTDR . [C]∥Optical Fiber Communication Conference, Anaheim, California. Washington, D.C.: OSA. 2016, M2D: 6.

【44】Iida D, Toge K, Manabe T. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR [J]. Optical Fiber Technology. 2017, 36: 19-25.

【45】Zhang Y X, Fu S Y, Chen Y S, et al. A visibility enhanced broadband phase-sensitive OTDR based on the UWFBG array and frequency-division-multiplexing [J]. Optical Fiber Technology. 2019, 53: 101995.

【46】He Q, Zhu T, Zhou J, et al. Frequency response enhancement by periodical nonuniform sampling in distributed sensing [J]. IEEE Photonics Technology Letters. 2015, 27(20): 2158-2161.

【47】Zhang J D, Zheng H, Zhu T, et al. Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling [J]. Optics Letters. 2018, 43(9): 2022-2025.

【48】Zhang J D, Zhu T, Zheng H, et al. Breaking through the bandwidth barrier in distributed fiber vibration sensing by sub-Nyquist randomized sampling [J]. Proceedings of SPIE. 2017, 10323: 103238H.

【49】Zou W W, Yang S, Long X, et al. Optical pulse compression reflectometry: proposal and proof-of-concept experiment [J]. Optics Express. 2015, 23(1): 512-522.

【50】Lu B, Pan Z Q, Wang Z Y, et al. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse [J]. Optics Letters. 2017, 42(3): 391-394.

【51】Lu B, Wang Z Y, Zheng H R, et al. The achievement of high spatial resolution and long haul distributed fiber vibration sensing system [J]. Chinese Journal of Lasers. 2017, 44(10): 1015001.
卢斌, 王照勇, 郑汉荣, 等. 高空间分辨率长距离分布式光纤振动传感系统实现 [J]. 中国激光. 2017, 44(10): 1015001.

【52】Juarez J C, Taylor H F. Field test of a distributed fiber-optic intrusion sensor system for long perimeters [J]. Applied Optics. 2007, 46(11): 1968-1971.

【53】Tejedor J. MacIas-Guarasa J, Martins H F, et al. A novel fiber optic based surveillance system for prevention of pipeline integrity threats [J]. Sensors. 2017, 17(2): E355.

【54】Sun Q, Feng H, Yan X Y, et al. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction [J]. Sensors. 2015, 15(7): 15179-15197.

【55】Tan D J, Tian X Z, Sun W, et al. An oil and gas pipeline pre-warning system based on Φ-OTDR [J]. Proceedings of SPIE. 2014, 9157: 91578W.

【56】Huang J F, Xu T W, Feng S W, et al. Multiple disturbance detection and intrusion recognition in distributed acoustic sensing [J]. Proceedings of SPIE. 2018, 10849: 108490E.

【57】Jiang F, Li H L, Zhang Z H, et al. An event recognition method for fiber distributed acoustic sensing systems based on the combination of MFCC and CNN [J]. Proceedings of SPIE. 2018, 10618: 1061804.

【58】Chen J P, Wu H J, Liu X R, et al. A real-time distributed deep learning approach for intelligent event recognition in long distance pipeline monitoring with DOFS . [C]∥2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), October 18-20, 2018. Zhengzhou, China. IEEE. 2018, 290-296.

【59】Wang Z Y, Pan Z Q, Ye Q, et al. Fast pattern recognition based on frequency spectrum analysis used for intrusion alarming in optical fiber fence [J]. Chinese Journal of Lasers. 2015, 42(4): 0405010.
王照勇, 潘政清, 叶青, 等. 用于光纤围栏入侵告警的频谱分析快速模式识别 [J]. 中国激光. 2015, 42(4): 0405010.

【60】Wang Z Y, Li L C, Zheng H R, et al. Smart distributed acoustics/vibration sensing with dual path network . [C]∥26th International Conference on Optical Fiber Sensors, Lausanne. Washington, D.C.: OSA. 2018, WF105.

【61】Duan N, Peng F, Rao Y J. Field test for real-time position and speed monitoring of trains using phase-sensitive optical time domain reflectometry [J]. Proceedings of SPIE. 2014, 9157: 91577A.

【62】Cedilnik G, Hunt R, Lees G. Advances in train and rail monitoring with DAS . [C]∥Conference of Optical Fiber Sensors. 2018, ThE35.

【63】He Z Y, Liu Q W, Fan X Y, et al. Fiber-optic distributed acoustic sensors (DAS) and applications in railway perimeter security [J]. Proceedings of SPIE. 2018, 10821: 1082102.

【64】Akkerman J, Prahl F. Fiber optic sensing for detecting rock falls on rail rights of way [M]. Washington: AREMA. 2013, 1099-1118.

【65】Wang Z Y, Lu B, Zheng H R, et al. Novel railway-subgrade vibration monitoring technology using phase-sensitive OTDR [J]. Proceedings of SPIE. 2017, 10323: 103237G.

【66】Wang Z Y, Zheng H R, Li L C, et al. Practical multi-class event classification approach for distributed vibration sensing using deep dual path network [J]. Optics Express. 2019, 27(17): 23682-23692.

【67】Parker T, Shatalin S, Farhadiroushan M. Distributed acoustic sensing - a new tool for seismic applications [J]. First Break. 2014, 32: 61-69.

【68】Daley T M, Miller D E, Dodds K, et al. Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama [J]. Geophysical Prospecting. 2016, 64(5): 1318-1334.

【69】Harris K, White D, Melanson D, et al. Feasibility of time-lapse VSP monitoring at the AquistoreCO2 storage site using a distributed acoustic sensing system [J]. International Journal of Greenhouse Gas Control. 2016, 50: 248-260.

【70】Byerley G, Monk D, Aaron P, et al. Time-lapse seismic monitoring of individual hydraulic frac stages using a downhole DAS array [J]. The Leading Edge. 2018, 37(11): 802-810.

【71】Correa J, Pevzner R, Bona A, et al. 7(1): SA11-SA19 . 2019.

【72】Franciscangelis C, Margulis W, Floridia C, et al. Aircraft distributed structural health monitoring based on φ-OTDR [C]. Aerospace Technology Congress. 2016.

【73】Michlmayr G, Chalari A, Clarke A, et al. Fiber-optic high-resolution acoustic emission (AE) monitoring of slope failure [J]. Landslides. 2017, 14(3): 1139-1146.

【74】Filograno M L, Riziotis C, Kandyla M. A low-cost phase-OTDR system for structural health monitoring: design and instrumentation [J]. Instruments. 2019, 3: 46.

【75】Masoudi A, Newson T P. Distributed optical fibre sensing with enhanced frequency range and sensitivity for structural health monitoring . [C]∥Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), Vancouver. Washington, D.C.: OSA. 2016, SeM3D: 2.

【76】Dou S, Lindsey N, Wagner A M, et al. Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study [J]. Scientific Reports. 2017, 7: 11620.

【77】Jousset P, Reinsch T, Ryberg T, et al. Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features [J]. Nature Communications. 2018, 9: 2509.

【78】Lindsey N J, Dawe T C. Ajo-Franklin J B. Illuminating seafloor faults and ocean dynamics with dark fiber distributed acoustic sensing [J]. Science. 2019, 366(6469): 1103-1107.

【79】Ajo-Franklin J B, Dou S, Lindsey N J, et al. Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection [J]. Scientific Reports. 2019, 9: 1328.

【80】Steven L G, David A B, Brian L B, et al. General purpose fiber optic hydrophone made of castable epoxy [J]. Proceedings of SPIE. 1990, 1367: 13-29.

【81】Philipp R, René E, Katerina K. Distributed acoustic sensing: Towards partial discharge monitoring [J]. Proceedings of SPIE. 2015, 9634: 96341C.

【82】Murray M J, Davis A, Redding B. Fiber-wrapped mandrel microphone for low-noise acoustic measurements [J]. Journal of Lightwave Technology. 2018, 36(16): 3205-3210.

【83】Loranger S, Gagné M, Lambin-Iezzi V, et al. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre [J]. Scientific Reports. 2015, 5: 11177.

【84】Yan A D, Huang S, Li S, et al. Distributed optical fiber sensors with ultrafast laser enhanced Rayleigh backscattering profiles for real-time monitoring of solid oxide fuel cell operations [J]. Scientific Reports. 2017, 7(1): 9360.

【85】Murray M J, Davis A, Redding B. Multimode fiber Φ-OTDR with holographic demodulation [J]. Optics Express. 2018, 26(18): 23019-23030.

【86】Shpalensky N, Shiloh L, Gabai H, et al. Use of distributed acoustic sensing for Doppler tracking of moving sources [J]. Optics Express. 2018, 26(13): 17690-17696.

【87】Liang J J, Wang Z Y, Lu B, et al. Distributed acoustic sensing for 2D and 3D acoustic source localization [J]. Optics Letters. 2019, 44(7): 1690-1693.

【88】Den Boer J J, Pearce J G, et al. Fiber optic cable with increased directional sensitivity: US9091589B2[P]. 2015, 07: 28.

【89】Ivan L, Chen N, Paul S. Multicomponent distributed acoustic sensing: Concept and theory [J]. Geophysics. 2018, 83(2): P1-P8.

引用该论文

Cai Haiwen,Ye Qing,Wang Zhaoyong,Lu Bin. Distributed Optical Fiber Acoustic Sensing Technology Based on Coherent Rayleigh Scattering[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050001

蔡海文,叶青,王照勇,卢斌. 基于相干瑞利散射的分布式光纤声波传感技术[J]. 激光与光电子学进展, 2020, 57(5): 050001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF