激光与光电子学进展, 2019, 56 (11): 110602, 网络出版: 2019-06-13   

双平行马赫-曾德尔调制器产生三角形光子微波及相似度影响因素 下载: 817次

Triangular Photonic Microwave-Signal Generation Based on Dual-Parallel Mach-Zehnder Modulator and Influence Factors of Its Similarity
作者单位
贵州大学物理学院, 贵州 贵阳 550025
摘要
研究了谐波分量对三角形光子微波信号相似度的影响。用数值模拟方法研究了三角波形的傅里叶级数保留至不同阶次时波形与理想波形的相似性。当傅里叶分量保留至三阶时,波形与理想三角波形的相似度达到0.989。提出了一种基于双平行马赫-曾德尔调制器产生三角形光子微波信号的方法。调节系统的6个参数,使得到的基频分量和三次谐波分量的功率比值与理想三角波形的一阶和三阶傅里叶分量功率比值相等,从而得到三角形光子微波信号。实验结果显示,该系统能产生6 GHz的三角形光子微波信号。
Abstract
The influence of the high-order Fourier components of an ideal triangular microwave signal on the similarity of the triangular signals is studied here. Using the numerical simulation method, the similarity between the original ideal waveform and the simulated waveform with different orders is studied. The numerical simulation results show that the similarity between the triangular photonic microwave signal and the ideal triangular microwave can reach 0.989 when the Fourier components of the triangular photonic microwave signal are retained to the third order. A scheme based on the generation of triangular microwave signals using a dual-parallel Mach-Zehnder modulator is presented. By controlling the six parameters of the system, a triangular photonic microwave signal can be obtained when the power ratio between the fundamental frequency and the third-order harmonics of the generated signal is equal to that between the first- and third-order Fourier components of the ideal triangular waveform. The experimental results show that the system can generate triangular photonic microwave signals with a repetition rate of 6 GHz.

孙亚园, 白光富, 胡林. 双平行马赫-曾德尔调制器产生三角形光子微波及相似度影响因素[J]. 激光与光电子学进展, 2019, 56(11): 110602. Yayuan Sun, Guangfu Bai, Lin Hu. Triangular Photonic Microwave-Signal Generation Based on Dual-Parallel Mach-Zehnder Modulator and Influence Factors of Its Similarity[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110602.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!