首页 > 论文 > 中国激光 > 46卷 > 10期(pp:1004005--1)

光刻机扫描狭缝刀口半影宽度测量技术

Blade Edge''''s Penumbra Measurement for Scanning Slit of Lithographic Tools

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

扫描狭缝是步进扫描光刻机用于控制曝光剂量的重要单元。随着光刻工艺节点减小到90 nm及以下,光刻照明分系统对刀口半影宽度的测量精度和重复性提出了更高要求。基于此,提出一种基于光瞳像的光刻机扫描狭缝刀口半影宽度测量技术。分析了共面扫描狭缝刀片成像光路,推导得到掩模面半影区与光瞳像的对应关系。搭建了扫描狭缝刀口半影检测系统,并对90 nm光刻机照明分系统的扫描狭缝刀口半影宽度进行测量。实验结果表明,所提测量技术可有效改善光强波动对刀口半影宽度测量的影响,扫描狭缝刀口半影宽度的测量重复性达到0.026 mm,提高了3.46倍(与传统扫描法相比)。该技术可用于高数值孔径浸没式光刻机照明分系统光学半影参数的测量。

Abstract

Scanning slit is one of the most important elements in step-and-scan lithographic tools for controlling exposure doses. As the technology of lithography extends to 90-nm (and lower) process nodes, the lithographic-tool illumination subsystem has presented significant requirements for the precision and repeatability of the penumbra measurement. Based on this, a blade edge''s penumbra measurement technique for scanning slits of lithographic tools based on the pupil image is proposed. The corresponding relationship between the penumbra of the mask surface and pupil image is deduced by analyzing the imaging optical path of the coplanar scanning slit. A penumbra measurement system is developed, and the scanning slit edges'' penumbra of a 90-nm lithographic-tool illumination system is measured. The experimental result shows that the proposed measurement method can effectively reduce the impact of light-intensity fluctuation on the penumbra measurement. The repeatability of the penumbra measurement is 0.026 mm, which is 3.46-times higher than that of the conventional scanning method. This technique can be used to measure the optical penumbra parameters of high-numerical-aperture immersion-lithographic-tool illumination subsystems.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN305.99; TP23; TP29

DOI:10.3788/CJL201946.1004005

所属栏目:测量与计量

基金项目:国家科技重大专项课题、广西高校光电信息处理重点实验室开放基金;

收稿日期:2019-03-21

修改稿日期:2019-06-21

网络出版日期:2019-10-01

作者单位    点击查看

刘志帆:上海大学机电工程与自动化学院, 上海 200444
陈明:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
步扬:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
徐静浩:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
范李立:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
张建华:上海大学机电工程与自动化学院, 上海 200444
王向朝:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800

联系人作者:步扬(buyang@siom.ac.cn)

备注:国家科技重大专项课题、广西高校光电信息处理重点实验室开放基金;

【1】Li M X, Wang L and Dong L H. Development of a novel optical variable attenuator in lithography exposure system. Chinese Journal of Lasers. 45(1), (2018).
李美萱, 王丽, 董连和. 光刻曝光系统中新型光可变衰减器的研制. 中国激光. 45(1), (2018).

【2】Li Z Z, Li S K and Wang X Z. Source and mask optimization using stochastic parallel gradient descent algorithm in optical lithography. Acta Optica Sinica. 34(9), (2014).
李兆泽, 李思坤, 王向朝. 基于随机并行梯度速降算法的光刻机光源与掩模联合优化方法. 光学学报. 34(9), (2014).

【3】Yang C X, Li S K and Wang X Z. Source mask optimization based on dynamic fitness function. Acta Optica Sinica. 36(1), (2016).
杨朝兴, 李思坤, 王向朝. 基于动态适应度函数的光源掩模优化方法. 光学学报. 36(1), (2016).

【4】Zhu B E, Wang X Z, Li S K et al. Aberration measurement method for hyper-NA lithographic projection lens. Acta Optica Sinica. 36(1), (2016).
诸波尔, 王向朝, 李思坤 等. 超大数值孔径光刻机投影物镜波像差检测方法. 光学学报. 36(1), (2016).

【5】Wang L, Li S K, Wang X Z et al. Source mask projector optimization method of lithography tools based on particle swarm optimization algorithm. Acta Optica Sinica. 37(10), (2017).
王磊, 李思坤, 王向朝 等. 基于粒子群优化算法的光刻机光源掩模投影物镜联合优化方法. 光学学报. 37(10), (2017).

【6】Yao C C and Gong Y. Research on temperature distribution of deep ultraviolet lithographic projection objective. Chinese Journal of Lasers. 43(5), (2016).
姚长呈, 巩岩. 深紫外光刻投影物镜温度特性研究. 中国激光. 43(5), (2016).

【7】Cheng W L, Zhang F, Lin D L et al. Multi-degree-of-freedom uniformity correction method of illumination system in lithography machine. Acta Optica Sinica. 38(10), (2018).
程伟林, 张方, 林栋梁 等. 光刻机照明系统的多自由度均匀性校正方法. 光学学报. 38(10), (2018).

【8】Li J L. Motion model of dual-stage in ArF immersion lithography. Beijing: University of Chinese Academy of Sciences. 2-21(2013).
李金龙. ArF浸没光刻双工件台运动模型研究. 北京: 中国科学院大学. 2-21(2013).

【9】Lin D L, Zhang F and Huang H J. Research of scanning slit with minimal penumbra of blade''''s edge in lithography. Optics and Precision Engineering. 26(5), 1046-1053(2018).
林栋梁, 张方, 黄惠杰. 刀口半影最小化的光刻机扫描狭缝研究. 光学精密工程. 26(5), 1046-1053(2018).

【10】Xie C K, Chen M, Yang B X et al. Development and performance testing of pulsed excimer laser energy detector. Chinese Journal of Lasers. 42(1), (2015).
谢承科, 陈明, 杨宝喜 等. 准分子激光脉冲能量探测器的设计与性能测试. 中国激光. 42(1), (2015).

【11】Wong A K K. Resolution enhancement techniques in optical lithography. 31-70(2001).

【12】Cheng W L, Zhang F, Lin D L et al. High precision correction method of illumination field uniformity for photolithography illumination system. Acta Optica Sinica. 38(7), (2018).
程伟林, 张方, 林栋梁 等. 光刻机照明光场均匀性高精度校正方法研究. 光学学报. 38(7), (2018).

【13】Gan Y, Zhang F, Zhu S Y et al. Evaluation algorithm of pupil characteristic parameters in lithography illumination system. Chinese Journal of Lasers. 46(3), (2019).
甘雨, 张方, 朱思羽 等. 光刻机照明系统光瞳特性参数的评估算法. 中国激光. 46(3), (2019).

【14】Born M and Wolf E. Principles of optics. 116-141(1999).

【15】Yu D Y and Tan H Y. Engineering optics. 57-74(2011).
郁道银, 谈恒英. 工程光学. 57-74(2011).

【16】Chen M, Wang Y, Zeng A J et al. Flat Gauss illumination for the step-and-scan lithographic system. Optics Communications. 372, 201-209(2016).

【17】Chen M, Chen L Q, Zeng A J et al. Generation of trapezoidal illumination for the step-and-scan lithographic system. Applied Optics. 54(22), 6820-6826(2015).

【18】Cai Y M, Wang X Z, Bu Y et al. Optical design of Fourier transform lens for measurement of illumination pupil of lithography tools. Chinese Journal of Lasers. 42(4), (2015).
蔡燕民, 王向朝, 步扬 等. 光刻机照明光瞳测量用傅里叶变换物镜光学设计. 中国激光. 42(4), (2015).

引用该论文

Liu Zhifan,Chen Ming,Bu Yang,Xu Jinghao,Fan Lili,Zhang Jianhua,Wang Xiangzhao. Blade Edge''''s Penumbra Measurement for Scanning Slit of Lithographic Tools[J]. Chinese Journal of Lasers, 2019, 46(10): 1004005

刘志帆,陈明,步扬,徐静浩,范李立,张建华,王向朝. 光刻机扫描狭缝刀口半影宽度测量技术[J]. 中国激光, 2019, 46(10): 1004005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF