“S”型二元编码的正弦结构光模板设计与实验研究
Design and Experimental Study of Sinusoidal Structured Light Mask with “S” Shaped Binary Coding
摘要
正弦结构光场普遍应用于精密光学的三维测量,其正弦性直接或间接影响三维测量的精度。根据正弦条纹的周期性和对称性等几何特征,以计算机产生的标准正弦条纹单个周期作为编码对象,提出一种“S”型路径误差扩散的二元编码方法。整个正弦结构光模板通过周期性复制编码单元来实现,再通过高分辨率光刻技术加工制作在镀铬玻璃基板表面上。模板调制照明光源后,表征二元编码特征的高频信息直接被投影光学系统滤波,而表征正弦条纹信息的低频信息得以保留,从而实现正弦结构光场。最后建立光学系统的光学传递特性模型,对其固有的低通滤波机制进行解释。通过计算机模拟和实验进行验证,结果表明提出的正弦结构光场编码方法和制作工艺具有可行性。
Abstract
Sinusoidally structured light fields are widely used in three-dimensional (3D) measurements of precision optics, and their sinusoidality directly or indirectly affects the accuracy of the 3D measurement. Using geometric features such as the periodicity and symmetry of sinusoidal fringes, this study proposes the use of a single cycle of the standard sinusoidal computer-generated fringe as the coding object, coupled with a binary coding method of an S-path error diffusion. The entire sinusoidal light mask is obtained by periodically copying the coding unit, and it is then processed on the surface of the chrome-plated glass substrate using high-resolution photolithography technology. After the mask modulates the illumination form a light source, the high-frequency information that characterizes the binary coding feature is directly filtered by the optical projection system, whereas the low-frequency information that characterizes the sinusoidal fringe information is retained, thereby realizing a sinusoidally structured light field. Finally, the optical-transfer characteristics model of the optical system is established to explain its inherent low-pass filtering mechanism. Using computer simulation and experiments, results show that the proposed sinusoidally structured light field coding method and the manufacturing process are feasible.
中图分类号:O436
所属栏目:仪器,测量与计量
基金项目:国家自然科学基金、四川省重点研发专项、四川省重大科技专项;
收稿日期:2020-03-06
修改稿日期:2020-03-27
网络出版日期:2020-08-01
作者单位 点击查看
朱江平:四川大学计算机学院, 四川 成都 610065四川大学视觉合成图形图像技术国防重点学科实验室, 四川 成都 610065
荆海龙:四川大学视觉合成图形图像技术国防重点学科实验室, 四川 成都 610065
段智涓:四川大学计算机学院, 四川 成都 610065四川大学视觉合成图形图像技术国防重点学科实验室, 四川 成都 610065
安世勇:四川大学计算机学院, 四川 成都 610065四川大学视觉合成图形图像技术国防重点学科实验室, 四川 成都 610065
郭燕琼:四川大学计算机学院, 四川 成都 610065四川大学视觉合成图形图像技术国防重点学科实验室, 四川 成都 610065
联系人作者:朱江平(zjp16@scu.edu.cn)
备注:国家自然科学基金、四川省重点研发专项、四川省重大科技专项;
【1】Geng J. Structured-light 3D surface imaging: a tutorial [J]. Advances in Optics and Photonics. 2011, 3(2): 128-160.
【2】Liu Y K, Su X Y, Zhang Q C. A novel encoded-phase technique for phase measuring profilometry [J]. Optics Express. 2011, 19(15): 14137-14144.
【3】Schmalz C, Forster F, Schick A, et al. An endoscopic 3D scanner based on structured light [J]. Medical Image Analysis. 2012, 16(5): 1063-1072.
【7】Dou Y F, Su X Y. A flexible 3D profilometry based on fringe contrast analysis [J]. Optics & Laser Technology. 2012, 44(4): 844-849.
【9】Zhang Z H, Jing Z, Wang Z H, et al. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase calculation at discontinuities in fringe projection profilometry [J]. Optics and Lasers in Engineering. 2012, 50(8): 1152-1160.
【10】Zhong M, Chen W J, Su X Y, et al. Optical 3D shape measurement profilometry based on 2D S-transform filtering method [J]. Optics Communications. 2013, 300: 129-136.
【11】Chen W J, Shen Q J, Zhong M. Comparison of 2D S-transform profilometry and 2D windowed Fourier transform profilometry [J]. Optik. 2013, 124(24): 6732-6736.
【15】Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement of 3-D object shapes [J]. Applied Optics. 1983, 22(24): 3977-3982.
【16】Wu F, Zhang H, Lalor M J, et al. A novel design for fiber optic interferometric fringe projection phase-shifting 3-D profilometry [J]. Optics Communications. 2001, 187(4/5/6): 347-357.
【17】Yokota M, Asaka A, Yoshino T. Stabilization improvements of laser-diode closed-loop heterodyne phase-shifting interferometer for surface profile measurement [J]. Applied Optics. 2003, 42(10): 1805-1808.
【18】Su W H, Liu H Y, Richard K, et al. Fabrication of digital sinusoidal gratings and precisely controlled diffusive flats and their application to highly accurate projected fringe profilometry [J]. Optical Engineering. 2003, 42(6): 1730-1740.
【20】Huang P S, Zhang C P, Chiang F. High-speed 3-D shape measurement based on digital fringe projection [J]. Optical Engineering. 2003, 42(1): 163-168.
【21】Guo H W, He H T, Chen M Y. Gamma correction for digital fringe projection profilometry [J]. Applied Optics. 2004, 43(14): 2906-2914.
【23】Zhang S, Yau S T. Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector [J]. Applied Optics. 2007, 46(1): 36-43.
【26】Bell T, Zhang S. Toward superfast three-dimensional optical metrology with digital micromirror device platforms [J]. Optical Engineering. 2014, 53(11): 112206.
【27】Wang Y J, Zhang S. Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing [J]. Applied Optics. 2012, 51(7): 861-872.
【28】Wang Y J, Zhang S. Three-dimensional shape measurement with binary dithered patterns [J]. Applied Optics. 2012, 51(27): 6631-6636.
【29】Su X Y, Li J T. Information optics[M]. Beijing: Science Press, 2011.
苏显渝, 李继陶. 信息光学[M]. 2版. 北京: 科学出版社, 2011.
【30】Zhong M, Su X Y, Chen W J, et al. Modulation measuring profilometry with auto-synchronous phase shifting and vertical scanning [J]. Optics Express. 2014, 22(26): 31620-31634.
【31】Zhu J P, Zhou P, Su X Y, et al. Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination [J]. Optics Express. 2016, 24(25): 28549-28560.
引用该论文
Zhou Pei,Zhu Jiangping,Jing Hailong,Duan Zhijuan,An Shiyong,Guo Yanqiong. Design and Experimental Study of Sinusoidal Structured Light Mask with “S” Shaped Binary Coding[J]. Laser & Optoelectronics Progress, 2020, 57(15): 151203
周佩,朱江平,荆海龙,段智涓,安世勇,郭燕琼. “S”型二元编码的正弦结构光模板设计与实验研究[J]. 激光与光电子学进展, 2020, 57(15): 151203