首页 > 论文 > 光学学报 > 39卷 > 7期(pp:714003--1)

基于非正交二元相位板的多焦点阵列光镊

Multifocal Array Optical Tweezers Using Non-Orthogonal Binary Phase Plate

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于非正交二元相位板的阵列光镊系统,此系统可以实现对非正交排列的多个粒子的稳定捕获。通过对高数值孔径物镜在紧聚焦条件下的傅里叶变换理论和遗传算法来设计二元相位,优化得到具有不同分束比的,具有高衍射效率、高均匀度的归一化相位转折点,进而根据相位转折点设计出具有不同倾斜角度的非正交二元相位板。利用此二元相位板可以获得高数值孔径物镜聚焦下的各种非正交分布的阵列光斑。利用此类非正交阵列光斑,在光镊实验中实现了对二氧化硅微球的稳定捕获。理论模拟与实验结果表明,此方法可以实现对非正交排列的大量粒子的稳定捕获,在纳米粒子阵列的外延生长领域有着良好的应用前景。

Abstract

In this work, an array optical tweezer system based on non-orthogonal binary phase plates is proposed. The proposed system can stably trap multiple particles arranged in a non-orthogonal array. The binary phase is designed through a genetic algorithm and the Fourier transform theory of a high numerical aperture (NA) objective lens under tight focusing conditions. The normalized phase turning point of the binary phase is optimized to have different beam-splitting ratios, high diffraction efficiency, and high uniformity, and then it can be used to design the non-orthogonal binary phase plate with different inclination angles. Using this binary phase plate, we can obtain a variety of non-orthogonal array spots in the focal plane of the high-NA objective lens. Furthermore, the stable trapping of silica microspheres can be realized in the experiment of optical tweezers based on the non-orthogonal array spots. Theoretical simulation and experimental results show that this method can effectively achieve the optical trapping of a non-orthogonal arrangement of a large number of particles. This technology is expected to play an essential role in the epitaxial growth of nanoparticle arrays.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.0714003

所属栏目:激光器与激光光学

基金项目:国家自然科学基金、鲁东大学城新创新奖学金;

收稿日期:2019-03-01

修改稿日期:2019-03-27

网络出版日期:2019-07-01

作者单位    点击查看

孙丰钰:鲁东大学物理与光电工程学院, 山东 烟台 264025
陈苗:鲁东大学物理与光电工程学院, 山东 烟台 264025
梁宇:鲁东大学物理与光电工程学院, 山东 烟台 264025
宋翰林:鲁东大学交通学院, 山东 烟台 264025
王天屹:鲁东大学物理与光电工程学院, 山东 烟台 264025
刘忠凯:鲁东大学物理与光电工程学院, 山东 烟台 264025
孙美玉:鲁东大学物理与光电工程学院, 山东 烟台 264025
朱林伟:鲁东大学物理与光电工程学院, 山东 烟台 264025

联系人作者:孙美玉, 朱林伟(lwzhu@siom.ac.cn, )

备注:国家自然科学基金、鲁东大学城新创新奖学金;

【1】Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters. 11(5), 288-290(1986).

【2】Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical Journal. 61(2), 569-582(1992).

【3】Kroner A, Kardosh I, Rinaldi F et al. Towards VCSEL-based integrated optical traps for biomedical applications. Electronics Letters. 42(2), 93-94(2006).

【4】Taguchi K, Ueno H, Hiramatsu T et al. Optical trapping of dielectric particle and biological cell using optical fibre. Electronics Letters. 33(5), 413-414(1997).

【5】MacDonald M P, Spalding G C and Dholakia K. Microfluidic sorting in an optical lattice. Nature. 426(6965), 421-424(2003).

【6】Li B J, Xin H B, Zhang Y et al. Progress of optical trapping and manipulation. Acta Optica Sinica. 31(9), (2011).
李宝军, 辛洪宝, 张垚 等. 光捕获和光操控研究进展. 光学学报. 31(9), (2011).

【7】Li Y M, Gong L, Li D et al. Progress in optical tweezers technology. Chinese Journal of Lasers. 42(1), (2015).
李银妹, 龚雷, 李迪 等. 光镊技术的研究现况. 中国激光. 42(1), (2015).

【8】Guo Z H, Liu Z T, Chen Q M et al. Application and progress of laser shaping devices in optical tweezers. Laser & Optoelectronics Progress. 54(9), (2017).
郭志和, 刘泽田, 陈启敏 等. 激光整形器件在光镊中的应用及进展. 激光与光电子学进展. 54(9), (2017).

【9】Yao B L and Lei M. Multi-purpose optical micro-manipulation platform and applications. Laser & Optoelectronics Progress. 44(6), 15-26(2007).
姚保利, 雷铭. 多功能光学微操纵平台及应用. 激光与光电子学进展. 44(6), 15-26(2007).

【10】Zhou Y H, Li J F, Ren Y J et al. Optical tweezers array based on double-plate shearing interference for microfluidic particle sorter. Chinese Journal of Lasers. 37(6), 1659-1664(2010).
周妍煌, 李婧方, 任有健 等. 适用于微流控芯片颗粒分选的阵列光镊系统. 中国激光. 37(6), 1659-1664(2010).

【11】Wu J G, Ren Y X, Wang Z Q et al. Time-sharing multiple optical traps using rotating glass plate. Chinese Journal of Lasers. 36(10), 2751-2756(2009).
吴建光, 任煜轩, 王自强 等. 旋转波片法实现分时复用多光阱. 中国激光. 36(10), 2751-2756(2009).

【12】Sasaki K, Koshioka M, Misawa H et al. Pattern formation and flow control of fine particles by laser-scanning micromanipulation. Optics Letters. 16(19), 1463-1465(1991).

【13】Ren Y Y, Zhou J H, Wu J G et al. Holographic tweezers: the most vigorous member in optical tweezers’ family. Laser & Optoelectronics Progress. 45(11), 35-41(2008).
任煜轩, 周金华, 吴建光 等. 全息光镊-光镊家族中极具活力的成员. 激光与光电子学进展. 45(11), 35-41(2008).

【14】Polin M, Ladavac K, Lee S H et al. Optimized holographic optical traps. Optics Express. 13(15), 5831-5845(2005).

【15】Korda P T, Taylor M B and Grier D G. Kinetically locked-in colloidal transport in an array of optical tweezers. Physical Review Letters. 89(12), (2002).

【16】Kim H, Lee W, Lee H G et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nature Communications. 7, (2016).

【17】Maragò O M, Jones P H, Gucciardi P G et al. Optical trapping and manipulation of nanostructures. Nature Nanotechnology. 8(11), 807-819(2013).

【18】Masajada J, Bacia M and Drobczyński S. Cluster formation in ferrofluids induced by holographic optical tweezers. Optics Letters. 38(19), 3910-3913(2013).

【19】Huang N F, Martínez L J, Jaquay E et al. Optical epitaxial growth of gold nanoparticle arrays. Nano Letters. 15(9), 5841-5845(2015).

【20】Bao J H, Gong Z, Chen H T et al. Influence of the axial displacement of a trapped bead on the calibration of the force parameters of optical tweezers. Chinese Journal of Lasers. 32(10), 1421-1424(2005).
鲍建华, 龚錾, 陈洪涛 等. 粒子的轴向位移对光阱力学参数标定的影响. 中国激光. 32(10), 1421-1424(2005).

【21】Wolf E. Electromagnetic diffraction in optical systems-I. An integral representation of the image field. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 253(1274), 349-357(1959).

【22】Richard B B and Wolf E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 253(1274), 358-379(1959).

【23】Dammann H and G?rtler K. High-efficiency in-line multiple imaging by means of multiple phase holograms. Optics Communications. 3(5), 312-315(1971).

【24】Zhou C H and Liu L R. Numerical study of Dammann array illuminators. Applied Optics. 34(26), 5961-5969(1995).

【25】Xi P, Zhou C H, Zhao S et al. Design and fabrication of 64×64 spot array Dammann grating. Chinese Journal of Lasers. 28(4), 369-371(2001).
席鹏, 周常河, 赵帅 等. 64×64点阵达曼光栅的设计与实现. 中国激光. 28(4), 369-371(2001).

【26】Yang C X, Li S K and Wang X Z. Pixelated source mask optimization based on multi chromosome genetic algorithm. Acta Optica Sinica. 36(8), (2016).
杨朝兴, 李思坤, 王向朝. 基于多染色体遗传算法的像素化光源掩模优化方法. 光学学报. 36(8), (2016).

【27】Yang C X, Li S K and Wang X Z. Source mask optimization based on dynamic fitness function. Acta Optica Sinica. 36(1), (2016).
杨朝兴, 李思坤, 王向朝. 基于动态适应度函数的光源掩模优化方法. 光学学报. 36(1), (2016).

引用该论文

Fengyu Sun, Miao Chen, Yu Liang, Hanlin Song, Tianyi Wang, Zhongkai Liu, Meiyu Sun, Linwei Zhu. Multifocal Array Optical Tweezers Using Non-Orthogonal Binary Phase Plate[J]. Acta Optica Sinica, 2019, 39(7): 0714003

孙丰钰, 陈苗, 梁宇, 宋翰林, 王天屹, 刘忠凯, 孙美玉, 朱林伟. 基于非正交二元相位板的多焦点阵列光镊[J]. 光学学报, 2019, 39(7): 0714003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF