Chinese Optics Letters, 2019, 17 (7): 070602, Published Online: Jul. 12, 2019   

Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion Download: 831次

Author Affiliations
1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, China
2 College of Physics & Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract
We propose and experimentally demonstrate a novel Raman-based distributed fiber-optics temperature sensor (RDTS) for improving the temperature measurement accuracy and engineering applicability. The proposed method is based on double-ended demodulation with a reference temperature and dynamic dispersion difference compensation method, which can suppress the effect of local external physics perturbation and intermodal dispersion on temperature demodulation results. Moreover, the system can omit the pre-calibration process by using the reference temperature before the temperature measurement. The experimental results of dispersion compensation indicate that the temperature accuracy optimizes from 5.6°C to 1.2°C, and the temperature uncertainty decreases from 16.8°C to 2.4°C. Moreover, the double-ended configuration can automatically compensate the local external physics perturbation of the sensing fiber, which exhibits a distinctive improvement.

Jian Li, Yang Xu, Mingjiang Zhang, Jianzhong Zhang, Lijun Qiao, Tao Wang. Performance improvement in double-ended RDTS by suppressing the local external physics perturbation and intermodal dispersion[J]. Chinese Optics Letters, 2019, 17(7): 070602.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!