Photonics Research, 2019, 7 (8): 08000926, Published Online: Jul. 26, 2019  

Low threshold anti-Stokes Raman laser on-chip

Author Affiliations
1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
2 Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089, USA
Abstract
Raman lasers based on integrated silica whispering gallery mode resonant cavities have enabled numerous applications from telecommunications to biodetection. To overcome the intrinsically low Raman gain value of silica, these devices leverage their ultrahigh quality factors (Q), allowing submilliwatt stimulated Raman scattering (SRS) lasing thresholds to be achieved. A closely related nonlinear behavior to SRS is stimulated anti-Stokes Raman scattering (SARS). This nonlinear optical process combines the pump photon with the SRS photon to generate an upconverted photon. Therefore, in order to achieve SARS, the efficiency of the SRS process must be high. As a result, achieving SARS in on-chip resonant cavities has been challenging due to the low lasing efficiencies of these devices. In the present work, metal-doped ultrahigh Q (Q>107) silica microcavity arrays are fabricated on-chip. The metal-dopant plays multiple roles in improving the device performance. It increases the Raman gain of the cavity material, and it decreases the optical mode area, thus increasing the circulating intensity. As a result, these devices have SRS lasing efficiencies that are over 10× larger than conventional silica microcavities while maintaining low lasing thresholds. This combination enables SARS to be generated with submilliwatt input powers and significantly improved anti-Stokes Raman lasing efficiency.

Hyungwoo Choi, Dongyu Chen, Fan Du, Rene Zeto, Andrea Armani. Low threshold anti-Stokes Raman laser on-chip[J]. Photonics Research, 2019, 7(8): 08000926.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!