首页 > 论文 > 激光与光电子学进展 > 57卷 > 3期(pp:32201--1)

磁流变抛光流场瞬变过程响应时间

Response Time of Flow Transient Process of Magnetorheological Finishing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种磁流变抛光瞬变过程多相颗粒流模型,获得了瞬变过程在宏观、介观、微观三个层次的力学关联,从而建立了基于三向在位力学信号的瞬变过程表征方法,在位、同步、动态地测定了磁流变抛光的三向力学信号,解决了毫米尺度空间下磁流变抛光液-固界面的在位测量问题。采用屈服强度为220 kPa、宾汉黏度为0.07 Pa·s的高去除率抛光液对?50 mm的BK7超精密平面元件进行磁流变抛光实验,测量得到磁流变抛光流场瞬变响应时间为700 ms。

Abstract

In this paper, a multiphase particle flow model of the transient process of magnetorheological finishing (MRF) has been proposed. The mechanical relations of the transient processes are obtained at macroscopic, mesoscopic, and microscopic levels. A transient process characterization method based on three-direction in situ mechanical signals has also been proposed. The three-direction mechanical signals of the MRF are synchronously and dynamically measured in situ. The problem of in situ measurements of the liquid-solid interface of the MRF in millimeter-scale space is solved. The high removal rate finishing fluid with a yield strength of 220 kPa and a Bingham viscosity of 0.07 Pa·s is used to conduct the MRF experiment on a BK7 ultra-precision planar element of ?50-mm, and the transient response time of the MRF flow is identified to be 700 ms.

中国激光微信矩阵
补充资料

中图分类号:TH164

DOI:10.3788/LOP57.032201

所属栏目:光学设计与制造

基金项目:国家“高档数控机床与基础制造装备”科技重大专项“巨型激光装置光学元件超精密制造系统示范工程”课题、教育部重点实验室开放基金课题、贵州省科技计划项目、贵州省教育厅青年科技人才成长项目;

收稿日期:2019-07-01

修改稿日期:2019-07-23

网络出版日期:2020-02-01

作者单位    点击查看

杨航:遵义师范学院工学院, 贵州 遵义 563006
宋书飘:遵义师范学院工学院, 贵州 遵义 563006
张帅:遵义师范学院工学院, 贵州 遵义 563006
甘欢:遵义师范学院工学院, 贵州 遵义 563006
黄文:中国工程物理研究院机械制造工艺研究所, 四川 绵阳 621900中国工程物理研究院超精密加工技术重点实验室, 四川 成都 610200
何建国:中国工程物理研究院机械制造工艺研究所, 四川 绵阳 621900

联系人作者:杨航(yhangde@mail.dlut.edu.cn)

备注:国家“高档数控机床与基础制造装备”科技重大专项“巨型激光装置光学元件超精密制造系统示范工程”课题、教育部重点实验室开放基金课题、贵州省科技计划项目、贵州省教育厅青年科技人才成长项目;

【1】Wang D E, Hu D X, Yuan Q, et al. Wavefront control of main-amplifier system in the SG-Ⅲ laser facility [J]. Optics Communications. 2017, 394: 92-97.

【2】Zheng W G, Wei X F, Zhu Q H, et al. Laser performance of the SG-III laser facility [J]. High Power Laser Science and Engineering. 2016, 4: e21.

【3】Choi K K, Mait J N, Pellegrino J M, et al. Optics research at the US army research laboratory [J]. Applied Optics. 2017, 56(3): B103-B115.

【4】Chu Y X, Gan Z B, Liang X Y, et al. High-energy large-aperture Ti: sapphire amplifier for 5 PW laser pulses [J]. Optics Letters. 2015, 40(21): 5011-5014.

【5】Kiontke S, Kokot S. Roughness reduction on aspheric surfaces [J]. Proceedings of SPIE. 2015, 9345: 93450B.

【6】Matthews M J. Infrared laser processing of NIF optics . [C]∥Optical Design and Fabrication 2017 (Freeform, IODC, OFT), July 9-13, 2017, Denver, Colorado, United States. Washington, D.C.: OSA. 2017, OTu3B: 1.

【7】Spaeth M L, Manes K R, Honig J. Cleanliness for the NIF 1ω laser amplifiers [J]. Fusion Science and Technology. 2016, 69(1): 250-264.

【8】NIF) program update . [C]∥Optical Fabrication and Testing, June 18, 2000, Québec City, Canada. Washington, D.C.: OSA. 2000, OMC1.

【9】Hrubesh L W, Norton M A, Molander W A, et al. Methods for mitigating surface damage growth in NIF final optics [J]. Proceedings of SPIE. 2002, 4679: 23-33.

【10】Yang H, Liu X Y, Ma D Q, et al. Fluid dynamics analysis method for MRF of first order discontinuous optical elements [J]. High Power Laser and Particle Beams. 2019, 31(2): 29-35.
杨航, 刘小雍, 马登秋, 等. 一阶不连续光学元件MRF流体动力学分析方法 [J]. 强激光与粒子束. 2019, 31(2): 29-35.

【11】Yang H, Ma D Q, Zhang Q, et al. Novel fluid field analysis method for ultra-precision machining based on Christopherson iteration [J]. High Power Laser and Particle Beams. 2019, 31(6): 27-33.
杨航, 马登秋, 张强, 等. 基于Christopherson迭代的超精密加工流场分析方法 [J]. 强激光与粒子束. 2019, 31(6): 27-33.

【12】Pollicove H. Golini D. Deterministic manufacturing processes for precision optical surfaces. Key Engineering Materials[J]. 2003, 238/239: 53-58.

【13】Harris D C. History of magnetorheological finishing [J]. Proceedings of SPIE. 2011, 8016: 80160N.

【14】Yang H, He J G, Huang W, et al. Spot breeding method to evaluate the determinism of magnetorheological finishing [J]. Optical Engineering. 2017, 56(3): 035101.

【15】Golini D, Kordonski W I, Dumas P, et al. Magnetorheological finishing (MRF) in commercial precision optics manufacturing [J]. Proceedings of SPIE. 1999, 3782: 80-91.

【16】DeGroote J E, Marino A E, Wilson J P, et al. Removal rate model for magnetorheological finishing of glass [J]. Applied Optics. 2007, 46(32): 7927-7941.

【17】Shorey A B. Mechanisms of material removal in magnetorheological finishing (MRF) of glass [D]. New Yrok: University of Rochester. 2001, 34-60.

【18】Pan J S, Guo M L, Yan Q S, et al. Research on material removal model and processing parameters of cluster magnetorheological finishing with dynamic magnetic fields [J]. The International Journal of Advanced Manufacturing Technology. 2019, 100: 2283-2297.

【19】Chen M J, Liu H N, Cheng J, et al. Model of the material removal function and an experimental study on a magnetorheological finishing process using a small ball-end permanent-magnet polishing head [J]. Applied Optics. 2017, 56(19): 5573-5582.

【20】Zhang F, Yu J C, Zhang X J, et al. Magnetorheological finishing technology [J]. Optics and Precision Engineering. 1999, 7(5): 1-8.
张峰, 余景池, 张学军, 等. 磁流变抛光技术 [J]. 光学精密工程. 1999, 7(5): 1-8.

【21】Luo L L, He J G, Wang Y J, et al. Large-scale dwell time algorithm for computer controlled optical surfacing [J]. High Power Laser and Particle Beams. 2011, 23(12): 3207-3212.
罗丽丽, 何建国, 王亚军, 等. 计算机控制光学表面成形中大规模驻留时间求解 [J]. 强激光与粒子束. 2011, 23(12): 3207-3212.

【22】Cheng Y, Xu Z Z, Han S S, et al. Several exact solutions of Maxwell equation in uniform plasma [J]. Chinese Journal of Lasers. 1997, 24(4): 333-336.
程亚, 徐至展, 韩申生, 等. 均匀介质中麦克斯韦方程的无衍射解 [J]. 中国激光. 1997, 24(4): 333-336.

【23】Yeoh G H, Tu J Y. Computational techniques for multiphase flows [M]. Butterworth-Heinemann: Elsevier Science. 2019.

【24】Yoon D S, Park Y J, Choi S B. An eddy current effect on the response time of a magnetorheological damper: analysis and experimental validation [J]. Mechanical Systems and Signal Processing. 2019, 127: 136-158.

【25】Ninham B W. On progress in forces since the DLVO theory [J]. Advances in Colloid and Interface Science. 1999, 83(1/2/3): 1-17.

【26】Su W, Zhong J C, Zhang L B, et al. Numerical simulation study on field of temperature during the growth of Nd∶YAG crystal [J]. Chinese Journal of Lasers. 2003, 30(4): 334-340.
苏伟, 钟景昌, 张丽波, 等. Nd∶YAG晶体生长过程中温度场的数值模拟研究 [J]. 中国激光. 2003, 30(4): 334-340.

引用该论文

Yang Hang,Song Shupiao,Zhang Shuai,Gan Huan,Huang Wen,He Jianguo. Response Time of Flow Transient Process of Magnetorheological Finishing[J]. Laser & Optoelectronics Progress, 2020, 57(3): 032201

杨航,宋书飘,张帅,甘欢,黄文,何建国. 磁流变抛光流场瞬变过程响应时间[J]. 激光与光电子学进展, 2020, 57(3): 032201

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF