首页 > 论文 > 激光与光电子学进展 > 57卷 > 18期(pp:181503--1)

基于车道线的车辆测距方法的测距误差分析与改进

Measurement Error Analysis and Improvement of Vehicle Ranging Method Based on Lane Lines

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对现有的基于车道线宽度的测距方法在弯道时的测距误差,提出一种基于车道线斜率的弯道处车道线横向宽度的估计方法,并推导出基于车道线横向宽度的改进测距模型。随后在同心圆车道线模型下,对现有方法和所提方法的测距误差进行对比,所提方法的测距精度得到明显提高。当车道线曲率为0.01时,在真实距离为50 m内,所提方法的测距误差小于3%;当曲率小于0.005时,在真实距离为100 m内,所提方法的测距误差小于1%。最后基于KITTI数据集验证所提方法在实际道路环境下的测距效果,结果显示,所提方法的平均测距误差在5%以内,显著提高了弯道处的测距精度。

Abstract

To mitigate the problem of distance measurement errors in the existing vehicle ranging method based on lane line width of curved roads, this study propose a lane line lateral width estimation method at the curve based on the slope of the lane line. Further, an improved ranging model based on lateral width of the lane line is derived. Then, compared with the existing method, the ranging accuracy of the proposed method is obviously improved under the concentric circular lane line model. When the curvature of the lane line is 0.01 and 0.005, the distance measurement errors of proposed method within the true distance of 50 and 100 m are less than 3% and 1%, respectively. Finally, the proposed method is evaluated based on an actual road environment on the KITTI dataset. Results show that the average distance measurement error is less than 5%, indicating the accuracy of distance measurement is significantly improved at the curved road.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:U491.6

DOI:10.3788/LOP57.181503

所属栏目:机器视觉

收稿日期:2019-12-25

修改稿日期:2020-02-10

网络出版日期:2020-09-01

作者单位    点击查看

刘军:江苏大学汽车与交通工程学院, 江苏 镇江 212013
张睿:江苏大学汽车与交通工程学院, 江苏 镇江 212013
胡超超:江苏大学汽车与交通工程学院, 江苏 镇江 212013

联系人作者:刘军(liujun@ujs.edu.cn)

【1】Rezaei M, Klette R. Vision-based driver-assistance systems [M]. ∥Rezaei M, Klette R. Computer vision for driver assistance. Computational imaging and vision. Cham: Springer. 2017, 45: 1-18.

【2】Liu L C, Fang C Y, Chen S W. A novel distance estimation method leading a forward collision avoidance assist system for vehicles on highways [J]. IEEE Transactions on Intelligent Transportation Systems. 2017, 18(4): 937-949.

【3】Adamshuk R, Carvalho D. Neme J H Z, et al. On the applicability of inverse perspective mapping for the forward distance estimation based on the HSV colormap . [C]∥2017 IEEE International Conference on Industrial Technology (ICIT), March 22-25, 2017, Toronto, ON. New York: IEEE. 2017, 1036-1041.

【4】Rezaei M, Terauchi M, Klette R. Robust vehicle detection and distance estimation under challenging lighting conditions [J]. IEEE Transactions on Intelligent Transportation Systems. 2015, 16(5): 2723-2743.

【5】Cheung H K, Siu W C, Lee S, et al. Accurate distance estimation using camera orientation compensation technique for vehicle driver assistance system . [C]∥2012 IEEE International Conference on Consumer Electronics (ICCE), January 13-16, 2012, Las Vegas, NV, USA. New York: IEEE. 2012, 227-228.

【6】Han J, Heo O, Park M, et al. Vehicle distance estimation using a mono-camera for FCW/AEB systems [J]. International Journal of Automotive Technology. 2016, 17(3): 483-491.

【7】Zhao D C, Huang J, et al. Vehicle position estimation using geometric constants in traffic scene . [C]∥Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics, October 8-10, 2014, Qingdao, China. New York: IEEE. 2014, 90-95.

【8】Lee J. Intervehicle distance estimation through camera images [J]. Journal of Electronic Imaging. 2018, 27(6): 063001.

【9】Moghadam P, Starzyk J A, Wijesoma W S. Fast vanishing-point detection in unstructured environments [J]. IEEE Transactions on Image Processing. 2012, 21(1): 425-430.

引用该论文

Liu Jun,Zhang Rui,Hu Chaochao. Measurement Error Analysis and Improvement of Vehicle Ranging Method Based on Lane Lines[J]. Laser & Optoelectronics Progress, 2020, 57(18): 181503

刘军,张睿,胡超超. 基于车道线的车辆测距方法的测距误差分析与改进[J]. 激光与光电子学进展, 2020, 57(18): 181503

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF