首页 > 论文 > 激光与光电子学进展 > 42卷 > 6期(pp:34-38)

掺Tm3+光纤激光器的进展

Progress of Tm3+-Doped Fiber Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

总结分析了近期连续波输出、脉冲输出和上转换连续波输出的掺Tm3+光纤激光器现状。指出采用Tm3+分别与Yb3+、Ho3+和Al3+共掺的光纤,可使掺Tm3+光纤激光器扩展抽运源波长、压缩调Q脉宽和提高斜率效率。

Abstract

The new development of Tm3+-doped fiber laser of CW, pulsed and upconversion CW output was re-viewed. The Tm3+ fiber laser codoped with Yb3+, Ho3+ and Al3+ respectively expanded the wavelength of pump source, compressed the output pulse width and improved the slope efficiency.

投稿润色
补充资料

所属栏目:光学器件

收稿日期:2004-12-03

修改稿日期:--

网络出版日期:--

作者单位    点击查看

张云军:哈尔滨工业大学光电子研究所可调谐气体激光技术国家级重点实验室,哈尔滨 150001
王月珠:哈尔滨工业大学光电子研究所可调谐气体激光技术国家级重点实验室,哈尔滨 150001
鞠有伦:哈尔滨工业大学光电子研究所可调谐气体激光技术国家级重点实验室,哈尔滨 150001
姚宝权:哈尔滨工业大学光电子研究所可调谐气体激光技术国家级重点实验室,哈尔滨 150001

备注:张云军(1977-),男,哈尔滨工业大学光电子研究所在读博士生,现从事2μm光纤激光器的研究。

【1】Hanna D C, Jauncey I M, Percival R M. Continuous-wave oscillation of a monomode thulium-doped fiber laser. Electronics Letters, 1988, 24(19):1222~1223

【2】Hanna D C, Mccarthy M J, Perry I R. Efficient high-power continuous-wave operation of monomode Tm-doped fiber laser at 2μm pumped by Nd:YAG at 1.064μm. Electronics Letters, 1989, 25(20):1365~1366

【3】Barnes W L, Townsend J E. Highly tunable and efficient diode pumped operation of Tm3+ doped fiber lasers. Electronics Letters, 1990, 26(11):746~747

【4】Jackson S D, King T A. High-power diode-cladding-pumped Tm-doped silica fiber laser. Optics Letters, 1998, 23(18):1462~1464

【5】Hayward R A, Clarkson W A, Turner P W. Efficient cladding-pumped Tm-doped silica fiber laser with high power singlemode output at 2μm. Electronics Letters, 2000, 36(8):711~712

【6】Clarkson W A, Barnes N P, Turner P W. High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090nm. Optics Letters, 2002, 27(22):1989~1991

【7】Jianqiu Xu, Mahendra Prabhu, Jianren Lu. Efficient double-clad thulium-doped fiber laser with a ring cavity. Applied Optics, 2001, 40(12):1983~1988

【8】Nelson L E, Ippen E P, Haus H A. Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser. Appl. Phy. Lett., 1995, 67(1):19~21

【9】Sharp R C, Spock D E, Pan N. 190-fs passively mode-lock thulium fiber laser with a low threshold. Optics Letters, 1996, 21(12):881~883

【10】Dickinson B C, Jackson S D, King T A. 10mJ total output from a gain-switched Tm-doped fiber laser. Optics Communications, 2000, 182:199~203

【11】Golding P S, Jackson S D, Tsai P K. Efficient high power operation of a Tm-doped silica fiber laser pumped at 1.319μm. Optics Communications, 2000, 175:179~183

【12】Ashraf F. El-Sherif, King T A. High-energy high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator. Optics Communications, 2003, 218:337~344

【13】Ashraf F. El-Sherif, King T A. High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2μm. Optics Letters, 2003, 28(1):22~24

【14】Ashraf F. El-Sherif, King T A. Analysis and Optimization of Q-Switched operation of a Tm3+-Doped Silica Fiber Laser Operating at 2μm. IEEE Journal of Quantum Electronics, 2003, 39(6):759~765

【15】Jackson S D, King T A. Efficient Gain-Switched Operation of a Tm-Doped silica Fiber Laser. IEEE Journal of Quantum Electronics, 1998, 34(5):779~789

【16】Ghishler C, Luthy W, Morel J et al.. A Tm3+ sensitized Ho3+ silica fiber at 2.04μm pumped at 809nm. Optics Communication, 1994, 109:279~281

【17】Kyunghwan Oh, Morse T F, Kilian A et al.. Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser. Optics Letters, 1994, 19(4):278~280

【18】Ghisler C, Luthy W, Weber H P. Tuning of a Tm3+:Ho3+:Silica Fiber Laser at 2μm. IEEE Journal of Quantum Electronics, 1995, 31(11):1877~1879

【19】Ghisler C, Luthy W, Weber H P. Cladding-pumped of a Tm3+:Ho3+ silica fiber laser. Optics Communications, 1996, 132:474~478

【20】Jackson S D, Mossman S. Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers. Applied Optics, 2003, 42(15):2702~2707

【21】Jackson S D. Power scaling method for 2-μm diode-cladding-pumped Tm3+-doped silica fiber lasers that uses Yb3+ codoping. Optics Letters, 2003, 28(22):2192~2194

【22】Jackson S D. 8.8W diode-cladding-pumped Tm3+,Ho3+-doped fluoride fiber laser. Electronics Letters, 2001, 37(13):821~822

【23】McAleavey F J, Gorman J O,Donegan J F et al.. Narrow Linewidth, Tunable Tm3+-Doped Fluoride Fiber Laser for Optical-Based Hydrocarbon Gas Sensing. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(4):1103~1111

【24】Percival R M, Szebesta D, Davey S T. Highly efficient CW cascade operation of 1.47 and 1.82μm transitions in Tm-doped fluoride fiber laser. Electronics Letters, 1992, 28(20):1866~1868

【25】Komukai T, Yamamoto T, Sugawa T et al.. 1.47μm Band Tm3+ doped fluoride fiber amplifier using a 1.064μm upconversion pumping scheme. Electronics Letters, 1993, 29(1):110~112

【26】Miyajima Y, Komukai K, Sugawa T. 1-W CW Tm-doped fluoride fiber laser at 1.47μm. Electronics Letters, 1993, 29(8):660~661

【27】Percival R M, Szebesta D, Williams J R. Highly efficient 1.064μm upconversion pumped 1.47μm thulium doped fluoride fiber laser. Electronics Letters, 1994, 30(13):1057~1058

【28】Percival R M, Williams J R. Highly efficient 1.064μm upconversion pumped 1.47μm thulium doped fluoride fiber amplifier. Electronics Letters, 1994, 30(20):1684~1685

【29】El-Agmy R M, Luthy W, Graf T et al.. 1.47μm Tm3+:ZBLAN fiber laser pumped at 1.064μm. Electronics Letters, 1994, 39(6):507~508

【30】Grubb S G, Bennett K W, Cannon R S et al.. CW room-temperature blue upconversion fiber laser. Electronics Letters, 1992, 28(13):1243~1244

【31】Sanders S, Waarts R G, Mehuys D G et al.. Laser diode pumped 106mW blue upconversion fiber laser. Appl. Phys. Lett., 1995, 67(13):1815~1817

【32】Booth I J, Mackechnie C J, Ventrudo B F. Operation of diode laser pumped Tm3+ ZBLAN upconversion fiber laser at 482nm. IEEE Journal of Quantum Electronics, 1996, 32(1):118~123

【33】Mejia E B, Starodumov A N, Barmenkov Y O. Blue and infrared up-cinversion in Tm3+-doped fluorozirconate fiber pumped at 1.06,1.117, and 1.18μm. Applied Physics Letters, 1999, 74(11):1540~1542

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF