首页 > 论文 > 光学学报 > 25卷 > 6期(pp:-840)

拟威布尔分布密度函数在荧光寿命成像数据分析中的应用

Application of the Quasi-Weibull Distribution Density Function to Data Analysis of Fluorescence Lifetime Imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

荧光寿命法成像技术(FLIM)是一种非常有效、功能强大且能用来分析复杂生物组织和细胞分子的成像技术。传统的荧光寿命成像的数据分析,按某些具有不同寿命、离散的单参量指数模型来描述荧光衰减过程。在生物组织这样既复杂又不均匀的样品中,虽然多参量指数模型能提供比单参量指数模型对实验数据更好的拟合效果,但是离散多参量的假定往往是随意的。提出了拟威布尔分布密度函数可能是生物荧光分子团衰减动力过程的真实再现,并且通过计算证明,对于某些生化感兴趣的荧光分子团的多槽基面效价测定样品的数据,相对于单参量指数与多参量指数衰减函数有更好的一致性。同时讨论了将该荧光衰减模型应用于荧光寿命成像的前景。

Abstract

Fluorescence lifetime imaging is a rather effective and powerful method that can be used to analyze complex biological tissues and molecules. Conventional analyses of fluorescence lifetime data resolve the fluorescence decay profile in terms of discrete single exponential components with distinct lifetimes. In complex, heterogeneous biological samples such as tissue, multi-exponential decay functions can appear to provide a better fit to fluorescence decay data than the assumption of a single-exponential decay, but the assumption of multiple discrete components is essentially arbitrary. Quasi-Weibull distribution density function was likely to provide a truer representation of the underlying fluorescence dynamics. As comparing with those of single exponential and multi-exponential decay functions, the novel model can yield the better goodness of fit using data from multi-well plate assays of chemically and biologically interesting fluorophores. At the same time, the potential application of the quasi-Weibull distribution density function to fluorescence lifetime imaging was discussed.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN919.8

所属栏目:医用光学与生物光学

基金项目:国家自然科学基金(10371110)资助课题。

收稿日期:2004-09-28

修改稿日期:2004-11-11

网络出版日期:--

作者单位    点击查看

周明华:浙江工业大学应用数学系, 杭州 310032
隋成华:浙江工业大学应用物理系, 杭州 310032

联系人作者:周明华(mhzhou@zjut.edu.cn)

备注:周明华(1959~),男,浙江杭州人,副教授,硕士,主要从事计算机辅助几何设计、数学建模、计算、拟合等方面的研究。

【1】R, Cubeddu, D. Comelli, C. D. Andrea et al.. Time-resolved fluorescence imaging in biology and medicine[J]. J. Phys. D: Appl. Phys., 2002, 35(2): 61~76

【2】Jan Siegel, Daniel S. Elson, Stephen E. D. et al.. Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles[J]. Appl. Opt., 2003, 42(16): 2995~3004

【3】Zheng Wei, Huang Zhiwei, Xie Shusen et al.. Instrinsic microscopic fluorescence and imaging of human lung tissues[J]. Chin. J. Lasers, 2001, A28(7): 587~590 (in Chinese)
郑蔚,黄志伟,谢树森 等. 人肺组织内源性显微荧光特性研究[J]. 中国激光, 2001, A28(7): 587~590

【4】Joseph R. Lakowicz. On spectral relaxation in proteins[J]. American Society for Photobiology J., 2000, 72(4): 421~437

【5】J. R. Alcala, E. Gratton, F. G. Prendergast. Interpretation of fluorescence decays in proteins using continuous lifetime distributions[J]. Biophys. J., 1987, 51(6): 925~936

【6】Alexey S. Ladokhin. Red-edge excitation study of nonexponential fluorescence decay of indole in solution and in a protein[J]. J. Fluorescence, 1999, 9(1): 1~9

【7】Gao Shumei, Liu Ying, Lan Xiufeng et al.. Investigation of visible laser-induced hemoglobin fluorescence spectra characteristics[J]. Chin. J. Lasers, 2004, 31(7): 893~896 (in Chinese)
高淑梅,刘莹,兰秀风 等. 可见波段Ar+激光诱导血红蛋白荧光光谱特性研究[J]. 中国激光, 2004, 31(7): 893~896

【8】Ignacy Gryczynski, W. Wiczk, M. L. Johnson et al.. Lifetime distributions and anisotropy decays of indole fluorescence in cyclohexane/ethanol mixtures by frequency-domain fluorometry[J]. Biophys. Chem., 1988, 32(2~3): 173~185

【9】A. S. Ladokhin, S. H. White. Alphas and taus of tryptophan fluorescence in membranes[J]. Biophys. J., 2001, 81(3): 1825~1827

【10】A. G. Szabo, T. M. Stepanik, D. M. Wayner et al.. Conformational heterogeneity of the cooper binding site in azurin[J]. Biophys. J., 1983, 41(1): 233~244

【11】Michael A. Bean. Probability: The Science of Uncertainty with Applications to Investments, Insurance, and Engineering[M]. Beijing: China Machine Press, 2000. 235~245

【12】J. Ricardo Alcala. The effect of harmonic conformational trajectories on protein fluorescence and lifetime distributions[J]. J. Chem. Phys., 1994, 101(6): 4578~4584

【13】Benny K. C. Lee, J. Siegel J, S. E. D. Webb et al.. Application of the stretched exponential function to fluorescence lifetime imaging[J]. Biophysical J., 2001, 81(3): 1265~1274

【14】Lothar Sachs. Applied Statistics: A Handbook of Techniques[M]. Second Edition. New York, Berlin: Spring-Verlag, 1978. 234~325

【15】K. Dowling, M. J. Dayel, M. J. Lever et al.. Fluorescence lifetime imaging with picosecond resolution for biomedical applications[J]. Opt. Lett., 1998, 23(10): 810~812

引用该论文

周明华,隋成华. Application of the Quasi-Weibull Distribution Density Function to Data Analysis of Fluorescence Lifetime Imaging[J]. Acta Optica Sinica, 2005, 25(6): 835-840

周明华,隋成华. 拟威布尔分布密度函数在荧光寿命成像数据分析中的应用[J]. 光学学报, 2005, 25(6): 835-840

被引情况

【1】刘莹,刘诚,倪晓武,骆晓森,陆建,沈中华. 乙醇水溶液荧光发射的时域和频域特性研究. 光学学报, 2006, 26(10): 1580-1584

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF