首页 > 论文 > 最新论文

摘要

高光谱图像分类问题是高光谱遥感图像处理问题中的研究基础,它的主要目的是根据高光谱遥感图像中的光谱信息和空间信息将图像中的每个像元划分为不同的地物类别[1]。高光谱图像分类技术被广泛应用于环境监测、矿产勘探、军事目标识别等领域,然而高光谱图像的高维特性、波段间的高度相关性、光谱混合等使得高光谱图像分类面临着巨大的挑战。因此,高光谱图像分类问题越来越受到学者们的广泛关注[2-4]。

PDF全文 光学学报 | 2019,39(10):1028002
分享:

摘要

This work investigates the dynamic and nonlinear properties of quantum dot (QD) lasers directly grown on silicon with a view to isolator-free applications. Among them, the chirp parameter, also named the αH factor, is

PDF全文 Photonics Research | 2019,7(11):1222-1228
分享:

摘要

Foreseeing the proliferation of underwater vehicles and sensors, underwater wireless optical communication (UWOC) is a key enabler for ocean exploration, with strong competitiveness in short-range bandwidth-intensive applications. We provide a tutorial on the basic concepts and essential features of UWOC, as well as an overview of work being conducted in this field. Research ch

PDF全文 Chinese Optics Letters | 2019,17(10):100007
分享:

摘要

Conventional line-of-sight underwater wireless optical communication (UWOC) links suffer from huge signal fading in the presence of oceanic turbulence due to misalignment, which is caused by variations in the refractive index in the water. Non-line-of-sight (NLOS) communication, a novel underwater communication configuration, which has eased the requirements on the alignment, i

PDF全文 Chinese Optics Letters | 2019,17(10):100013
分享:

摘要

In this paper, recent advances in underwater wireless optical communication (UWOC) are reviewed for both LED- and LD-based systems, mainly from a perspective of advanced modulation formats. Volterra series-based nonlinear equalizers, which can effectively counteract the nonlinear impairments induced by the UWOC system components, are discussed and experimentally demonstrated. B

PDF全文 Chinese Optics Letters | 2019,17(10):100012
分享:

摘要

Underwater visible light communication (UVLC) is expected to act as an alternative candidate in next-generation underwater 5G wireless optical communications. To realize high-speed UVLC, the challenge is the absorption, scattering, and turbulence of a water medium and the nonlinear response from imperfect optoelectronic devices that can bring large attenuations and a nonlineari

PDF全文 Chinese Optics Letters | 2019,17(10):100011
分享:

摘要

In this work, a blue gallium nitride (GaN) micro-light-emitting-diode (micro-LED)-based underwater wireless optical communication (UWOC) system was built, and UWOCs with varied Maalox, chlorophyll, and sea salt concentrations were studied. Data transmission performance of the UWOC and the influence of light attenuation were investigated systematically. Maximum data transmission

PDF全文 Chinese Optics Letters | 2019,17(10):100010
分享:

摘要

The growing number of underwater activities is giving momentum to the development of new technologies, such as buoys, remotely operated vehicles, and autonomous underwater vehicles. The data collected by these vehicles need to be transmitted to a high-speed central unit. Clearly, wired solutions are not suitable, since they strongly impact the mobility. In this scenario, a prom

PDF全文 Chinese Optics Letters | 2019,17(10):100009
分享:

摘要

We systematically investigate the bubble-induced performance degradation for underwater optical wireless communication (UOWC) with different bubble sizes and positions. By using different transmit and receive diversities, we investigate the effectiveness of spatial diversity on the mitigation of the bubble-induced impairment to the UOWC link. With the help of a 2 × 2 multiple i

PDF全文 Chinese Optics Letters | 2019,17(10):100006
分享:

摘要

提出了一种新型的频率选择表面, 该结构具有良好的高频透射性能和较低频带的宽带吸收性能。吸收频率选择表面结构由有损层和带通层组成。通过等效电路法的分析, 有损层应该在通带内产生并联谐振, 因此给出了具体的等效电路模型并在ADS中进行了验证。在有损层的设计中, 在金属交叉贴片中加载两个电阻使其分为两部分实现了并联谐振。带通层利用无损耗槽型频率选择表面实现。仿真结果表明, 在12.75 GHz时只有0.7 dB

PDF全文 强激光与粒子束 | 2019,31(10):103222
分享:
首页上一页12345678910下一页尾页