首页 > 论文 > 推荐论文

摘要

为了解决传统高斯光束片状光照明显微成像技术高轴向分辨率时视场范围(FOV)小的问题, 结合艾里光束片状光照明样本成像与去卷积算法, 实现了光片显微镜对样本的高轴向分辨率大视场成像。数值模拟了高斯光束与艾里光束经过物镜聚焦后的光强分布。搭建实验光路系统, 在液晶空间光调制器上加载三次相位图生成艾里光束, 并扫描光束生成片状光照明荧光微球、染色的斑马鱼肌肉组织进行成像实验。在艾里光束光片显微镜

PDF全文 光学学报 | 2017,37(03):0318013
分享:
0 90 311

摘要

由于目前监控视频所拍摄的人脸图像目标较小、难以辨识, 图像超分辨处理已成为亟待解决监控视频图像实际应用问题的技术和手段。提出了一种针对室外监控视频人脸图像的超分辨技术,利用先验知识设置图像训练集, 并进行图像空间转化、去噪等预处理操作; 设计八层卷积神经网络并对各层类型及连接方式进行设定, 同时设定激活函数类型及各层间传递方式函数; 初始化参数并根据训练集训练网络; 根据损失函数反向调整卷

PDF全文 光学学报 | 2017,37(03):0318012
分享:
0 52 314

摘要

针对现有的基于卷积神经网络的图像超分辨率算法参数较多、计算量较大、训练时间较长、图像纹理模糊等问题, 结合现有的图像分类网络模型和视觉识别算法对其提出了改进。在原有的三层卷积神经网络中, 调整卷积核大小, 减少参数; 加入池化层, 降低维度, 减少计算复杂度; 提高学习率和输入子块的尺寸, 减少训练消耗的时间; 扩大图像训练库, 使训练库提供的特征更加广泛和全面。实验结果表明, 改进算法生成的网络模

PDF全文 光学学报 | 2017,37(03):0318011
分享:
0 145 328

摘要

多色成像作为超分辨成像技术的重要延伸, 极大地增强了人们研究亚细胞结构定位与交互关系的能力, 从而有助于研究者深入理解细胞内复杂的生命现象与过程。基于单分子定位超分辨显微成像术(SMLM)工作原理的特殊性, 已实现了激发依赖、激活依赖、分光依赖等数种有特点的多色成像方法。介绍6种主要的多色单分子定位超分辨显微成像技术, 从分色能力、光谱窜扰、数据采集效率等角度分析了各方法的优缺点, 并讨论了与

PDF全文 光学学报 | 2017,37(03):0318010
分享:
0 44 221

摘要

受激发射损耗显微技术(STED)作为一种远场超分辨显微成像技术, 具有几十纳米甚至几纳米的空间分辨率, 是细胞生物学等研究领域的重要成像工具。圆环形空心损耗光在物镜焦点附近的光场强度分布对STED空间分辨率起决定性作用。在高数值孔径物镜聚焦下, 光场的偏振态会对聚焦光场的强度分布产生显著的影响, 此外, 显微系统的轴外像差会严重破坏空心损耗光焦斑的中心对称性。基于矢量衍射理论, 理论模拟了在高数值孔

PDF全文 光学学报 | 2017,37(03):0318009
分享:
0 29 226

摘要

超分辨显微成像技术使细胞生物学进入到了一个全新的时代, 但如何进一步提高超分辨显微成像技术的时空分辨率仍是光学领域需要解决的重要问题。目前为止几乎所有的超分辨显微成像技术都依赖于荧光探针, 光调控荧光蛋白作为一类特殊的荧光探针, 可以被不同波长的激发光所激活, 产生随机或者特殊结构样式的信号。利用这些信息, 透镜系统的空间分辨率得到了提高。通过总结光调控荧光蛋白的各类参数, 从荧光探针入手

PDF全文 光学学报 | 2017,37(03):0318008
分享:
1 46 284

摘要

在过去的20年, 激光扫描共聚焦显微镜一直是在细胞水平和亚细胞水平上观察生命活动的标准工具, 但是基于针孔的共聚焦显微镜的光学层切是以牺牲焦平面以外的被激发的荧光色团和较大的光毒性为代价的。作为一种新型的荧光显微镜, 光片荧光显微镜采用侧向照明的方式, 对样品直接进行面成像。相对于点扫描的成像方式, 光片显微镜成像速度远远高于激光扫描共聚焦显微镜, 使得研究一些高速的精细生命活动过程成为了可

PDF全文 光学学报 | 2017,37(03):0318007
分享:
0 51 184

摘要

单幅图像超分辨率(SR)复原是一个病态逆问题, 需要利用图像的先验知识进行正则化约束。提出了一种同时考虑外在样例和内在自相似性的单幅图像SR复原算法, 其中外在先验知识是通过卷积神经网络从外在低分辨率-高分辨率图像对学习得到的, 而内在先验约束由聚类和低秩近似实现。实验结果表明, 本方法在复原效果和稳健性方面优于已有方法。

PDF全文 光学学报 | 2017,37(03):0318006
分享:
0 49 171

摘要

光学显微成像技术在生命科学、生物医学、临床医学诊断和材料科学等领域有着非常广泛的应用。但由于光学衍射极限的存在, 传统光学显微镜无法观察到纳米尺度的物质及生命活动, 极大地限制科学研究和医学的发展。近年来, 随着突破光学衍射极限的超分辨成像技术的不断发展, 显微成像分辨率得到不同程度的提高。目前在基于不同原理的各种超高分辨率显微镜中, 随机光学重构显微镜 (STORM) 分辨率最高, 可达几十纳米,

PDF全文 光学学报 | 2017,37(03):0318005
分享:
0 149 226

摘要

超分辨定位成像技术凭借对数千甚至数万张采集的原始图像进行单分子定位及重建, 可以获得几十纳米的超高分辨率, 观察到之前看不到的细胞结构以及生物现象。然而, 在实际的成像过程中, 采集到的图像会受到像差(来源于光学系统的不完美或样品本身的不均匀性)的影响而导致分辨率下降, 甚至会造成错误结果。为此, 定量表征了几种典型像差对超分辨定位成像的影响, 并提出了一种基于样品图像本身的像差校正方法。仿真

PDF全文 光学学报 | 2017,37(03):0318004
分享:
0 132 218
首页上一页12345678910下一页尾页