光通信研究, 2020 (5): 42, 网络出版: 2021-04-17  

一种敏感位移的光栅结构优化分析

Optimization Analysis of a Grating Structure with Sensitive Displacement
作者单位
太原工业学院 电子工程系, 太原 030051
摘要
针对目前位移传感器体积较大和分辨率较低的问题, 文章设计了一种面内位移检测的双层纳米光栅结构, 用耦合波理论阐述光栅的衍射性质, 使用Gsolver软件对双层光栅的上下两层光栅间隙、光栅周期、光栅占空比以及入射波长进行了优化仿真分析, 研究在各参数下, 双层纳米光栅面内位移对衍射效率的影响, 最终得到一组对位移敏感的光栅结构。仿真结果表明, 当两层光栅间隔为200 nm、光栅厚度为390 nm、光栅周期为800 nm以及入射光的波长为850 nm时, 双层光栅的光透射特性较好。可通过检测透射光强的变化来获得光栅的面内微位移。
Abstract
Aiming at the problem of large volume and low resolution of displacement sensor, this paper designs a nano-grating structure for in-plane displacement detection. The coupled wave theory is used to illustrate the diffraction properties of the grating. The grating gap, grating period, grating duty cycle and incident wavelength of the two-layer grating are optimized and analyzed by Gsolver software. The effects of the in-plane displacement of the double-layer grating on the diffraction efficiency under various parameters are studied. Finally, a set of displacement-sensitive grating structures is obtained. The simulation results show that the light transmission characteristics of the double-layered grating are better when the two-layer grating gap is 200 nm, the grating thickness is 390 nm, the grating period is 800 nm, and the incident light wavelength is 850 nm. The in-plane micro-displacement of the grating can be obtained by detecting changes in transmitted light intensity.
参考文献

[1] 张爽. 基于激光三角法的低像差微位移测量技术的研究[D].长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所),2018.

[2] 楼森. 电容式位移传感器测量系统的研究[D].上海: 东华大学,2018.

[3] 刘国卫,王军涛,凌骐,等.一种新型光纤光栅位移传感器的研制[J].工业仪表与自动化装置,2018(5):119-121.

[4] 彭凯. 大量程纳米时栅位移传感器的测量模型和误差机理研究[D].重庆: 重庆大学,2017.

[5] Moharam M G, Gaylord T K, Pommet D A, et al. Stable Implementation of the Rigorous Coupled-wave Analysis for Surface-relief Gratings: Enhanced Transmittance Matrix Approach[J].JOSA A,1995,12(5):1077-1086.

[6] Moharam M G, Gaylord T K, Grann E B, et al. Formulation for Stable and Efficient Implementation of the Rigorous Coupled-wave Analysis of Binary Gratings[J]. JOSA A, 1995, 12(5):1068-1076.

[7] 海德汉全新LIC2100敞开式直线光栅尺[J].电子工业专用设备,2015(3):66.

[8] 毕江林. 基于数字相位原理的光栅干涉位移传感技术研究[D].哈尔滨:哈尔滨工业大学,2017.

[9] Moharam M G, Gaylord T K. Diffraction Analysis of Dielectric Surface-relief Gratings[J].JOSA,1982,72(10):1385-1392.

[10] Carr D W, Sullivan J P, Friedmann T A. Laterally Deformable Nanomechanical Zeroth-order Gratings:Anomalous Diffraction Studied by Rigorous Coupled-wave Analysis[J].Optics Letters,2003,28(18):1636-1644.

[11] 蒋家成. 基于严格耦合波理论的光栅结构参数测量方法[D].哈尔滨:哈尔滨工业大学,2017.

[12] 王宾,李孟委,吴倩楠,等.双层纳米光栅微位移检测仿真[J].仪表技术与传感器,2018(4):6-9.

王晓慧. 一种敏感位移的光栅结构优化分析[J]. 光通信研究, 2020, 46(5): 42. WANG Xiao-hui. Optimization Analysis of a Grating Structure with Sensitive Displacement[J]. Study On Optical Communications, 2020, 46(5): 42.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!