光学学报, 2016, 36 (2): 0201001, 网络出版: 2016-01-25   

一种基线长度改变的能见度测量和评价方法

Changing Baseline Lengths Method of Visibility Measurement and Evaluation
作者单位
1 中国民航大学飞行技术学院, 天津 300300
2 中国民航大学民航气象研究所, 天津 300300
3 中国民航大学空中交通管理学院, 天津 300300
摘要
针对能见度真值难以确定和能见度仪测量结果难以评价的问题,提出了一种基线长度改变的能见度测量和评价的方法,并采用整体最小二乘拟合方法来降低基线长度的定位误差和透射率测量误差对消光系数的影响,提高了消光系数的测量精度。为验证方法的有效性和评价该方法在不同能见度条件下的测量性能,设计了移动测试平台,在大气模拟舱模拟了一次能见度由高到低持续变化的过程,采用多点多次测量的方式测量了环境的消光系数及能见度。实验结果表明该方法在不同能见度条件下,均有较高的测量稳定性和一致性。确定系数随能见度的降低而增大,能见度大于3000 m 时,确定系数也达到0.9以上,低能见度时可以达到0.99。各种能见度条件下,单位权方差在10-4~10-2之间,表明该方法测量的离散性很小,测量精度高,可作为能见度仪校正和标定的参考。
Abstract
To improve the accuracy of the visibility measurement and the evaluation of the measurement results, one method of changing baseline lengths visibility measurement is proposed. The least squares method is used to reduce the impact of errors of the position of the receiver and transmittance measurement on extinction coefficient. This can improve the measurement accuracy of the extinction coefficient. To verify the effectiveness of the method and evaluate the performance of the method under different visibility conditions, one mobile measuring platform is designed. Meanwhile a continuous atmospheric environment changing from high to low visibility is simulated in the atmospheric simulation chamber. In the simulation chamber, using the mobile platform, multi-point and multiple times measurements method is used to measure the extinction coefficient under different visibility conditions. The results show that this method has a high measurement stability and consistency under different visibility conditions. In the fitting process, coefficient of determination R2 increases with the visibility decreasing. When visibility is more than 3000 m, coefficient of determination can reach 0.9. Coefficient of determination can reach 0.99 in lower visibility. The unit weight variance is between 10-4 and 10-2 regardless of high or low visibility, this indicates the method has very smaller discrete and higher accuracy, which makes it potential to be used as the calibration of instrument and calibration of reference.
参考文献

[1] International Civil Aviation Organization. Annex 3 to the Convention on Internationl Civil Aviation. Meteorological Service for International Air Navigation, Annex 3 to the Convention on International Civil Aviation[S]. Montreal: International Civil Aviation Origanization, 2013.

[2] International Civil Aviation Organization. Doc 9837 AN/454. Manual on Automatic Meteorological Observing Systems at Aerodromes Doc 9837 AN/454[S]. Montreal: International Civil Aviation Origanization, 2013.

[3] International Civil Aviation Organization. Doc 9328 AN/908. Manual of Runway Visual Range Observing and Reporting Practices Doc 9328 AN/908[S]. Montreal: International Civil Aviation Origanization, 2005.

[4] World Meteorological Organization. WMO No.8. Guide to Meteorological Instruments and Methods of Observation WMO No.8[S]. Geneva: World Meteorological Organization, 2010.

[5] Civil Aviation Administration of China. AP-117-TM-2012-03. Civil Aviation Automated Weather Observing System Technical Specifications AP-117-TM-2012-03[S]. Beijing: Civil Aviation Administration of China, 2012.

[6] 杨玉霞, 胡雪红. PWD20能见度仪及与目测能见度对比分析[J]. 兰州大学学报(自然科学版), 2009, 45(F06): 61-63.

    Yang Yuxia, Hu Xuehong. Miriam PWD20 visibility and comparative analysis of visibility and visual[J]. Journal of Lanzhou University (Natural Sciences), 2009, 45(F06): 61-63.

[7] 谭浩波, 陈欢欢, 吴兑, 等. Model 6000型前向散射能见度仪性能评估及数据订正[J]. 热带气象学报, 2010, 26(6): 687-693.

    Tan Haobo, Chen Huanhuan, Wu Dui, et al.. The performance evaluation and correction of the forward scattering visibility sensor[J]. Journal of Tropical Meteorology, 2010, 26(6): 687-693.

[8] 张慧婵, 陈浏. 广州新机场目测和器测能见度资料的对比分析[J]. 气象研究与应用, 2010, 31(A02): 123-125.

    Zhang Huichan, Chen Liu. Contrast analysis of visual visibility and instrumental visibility on Guangzhou airport[J]. Journal of Meteorological Research and Application, 2010, 31(A02): 123-125.

[9] 吴振强, 李文斌, 杨森槐, 等. Belfort M6000 能见度传感器实测距离与人工目测距离的对比分析[J]. 科技创新导报, 2011(32): 99-101.

    Wu Zhenqiang, Li Wenbin, Yang Senhuai, et al.. Comparative analysis of the measured visibility by Belfort M6000 sensors and visual visibility[J]. Science and Technology Innovation Herald, 2011(32): 99-101.

[10] Griggs D J, Jones D W, Ouldridge M, et al.. The first WMO intercomparison of visibility measurements[J]. Instruments and Observing Methods Rep, 1990, 41: WMO/TD.401.

[11] Bloemink H I. KNMI visibility standard for calibration of scatterometers[C]. WMO Technical Conference on Instruments and Methods of Observation (TECO-2006), Geneva, Switzerland, 2006: 4-6.

[12] 何驰. 对比贵阳机场大气透射仪与前散射仪探测结果[J]. 空中交通管理, 2002, (6): 46-47.

    He Chi. Comparing the detection result of atmosphere transmission instrument and pre-scatter instrument at Guiyang airport[J]. Air Traffic Management, 2002, (6): 46-47.

[13] 濮江平, 胡宗刚, 魏阳春, 等. 能见度自动观测系统性能对比及分析[J]. 气象科学, 2002, 22(1): 60-71.

    Pu Jiangping, Hu Zonggang, Wei Yangchun, et al.. Comparison and analysis of property of visibility automatic observation instruments [J]. Scientia Meteorologica Sinica, 2002, 22(1): 60-71.

[14] 田丽. 大气透射仪与前散射仪在低能见度条件下的测量数据对比分析[J]. 气象水文海洋仪器, 2009, 26(3): 46-49.

    Tian Li. Measuring data comparative analysis between atmospheric transmission meter and forward scatter meter in the low visibility weather [J]. Meteorological, Hydrological and Marine Instruments, 2009, 26(3): 46-49.

[15] Crosby J D. Visibility sensor accuracy: What′s realistic[C]. 12th Symposium on Meteorological Observations and Instrumentation, 2003.

[16] 寇添, 王海晏, 王芳, 等. 机载激光距离选通成像大气后向散射光强研究[J]. 中国激光, 2015, 42(1): 0113003.

    Kou Tian, Wang Haiyang, Wang Fang, et al.. Study on black-scattering light intensity in airborne laser range-gated imaging[J]. Chinese J Lasers, 2015, 42(1): 0113003.

[17] 吕立慧, 刘文清, 张天舒, 等. 新型微脉冲激光雷达测量大气水平能见度[J]. 中国激光, 2014, 41(9): 0908005.

    Lu Lihui, Liu Wenqing, Zhang Tianshu, et al.. A new Micro-pulse lidar for atmospheric horizontal visibility measurement[J]. Chinese J Lasers, 2014, 41(9): 0908005.

[18] 康圣, 王江安, 陈冬, 等. 激光雷达雨中能见度测量[J]. 强激光与粒子束, 2011, 23(3): 637-641.

    Kang Sheng, Wagn Jiang′an, Chen Dong, et al.. Measurement of visibility using lidar in rain[J]. High Power Laser and Particle Beams, 2011, 23(3): 637-641.

[19] 蒋立辉, 黄炜, 冯帅. 实时背景噪声补偿的激光雷达能见度仪设计[J]. 激光与红外, 2014, 44(4): 399-404.

    Jiang Lihui, Huang Wei, Feng Shuai. Design of laser visibility meter based on real-time background compensation[J]. Laser & Infrared, 2014, 44(4): 399-404.

[20] 任席闯, 王江安, 吴荣华. 后向散射式能见度测试仪测量1064 nm 波长激光大气传输消光系数研究[J]. 红外技术, 2009, 31(1): 32-34.

    Ren Xichuang, Wang Jiang′an, Wu Ronghua. The research of extinction coefficient measurement of 1064 nm wavelength by backscatter visibility measuring set[J]. Infrared Technology, 2009, 31(1): 32-34.

[21] 韩道文, 刘文清, 张玉钧, 等. 基于激光雷达的水平能见度自动反演算法[J]. 激光与红外, 2007, 37(12): 1250-1252.

    Han Daowen, Liu Wenqing, Zhang Yujun, et al.. An algorithm for horizontal visibility based on lidar[J]. Laser & Infrared, 2007, 37(12): 1250-1252.

[22] 盛新志, 娄淑琴, 吴重庆, 等. 一种大气低能见度的测量方法和装置: 中国, 200510011321.2[P]. 2005-08-10.

[23] 马千里, 岳毅, 俞向明, 等. 利用散射积分浊度计计算能见度与实测能见度的对比分析[C]. 中国气象学会, 第27届中国气象学会年会大气物理学与大气环境分会场论文集, 2010: 5.

    Ma Qianli, Yue Yi, Yu Xiangming, et al.. Comparative analysis of the scattering integral turbidity meter calculatedand observed visibility [C]. The 27th China Meteorological Society Annual Meeting Atmospheric Physics and Atmospheric Branch of Field Collection, 2010: 5.

[24] 程绍荣, 魏全忠, 吕军. 一种实用型大气透射式能见度仪的研制[J]. 光电工程, 2011, 38(2): 144-150.

    Cheng Shaorong, Wei Quanzhong, Lu Jun. The development of a new atmosphere transmittance meter[J]. Opto-Electronic Engineering 2011, 38(2): 144-150.

[25] 赵力, 万晓正, 齐勇, 等. 多次反射法透射式能见度测量系统研究[J]. 山东科学, 2011, 24(6): 67-70.

    Zhao Li, Wan Xiaozheng, Qi Yong, et al.. Design of multi-reflection transmission method based visibility measurement system[J]. Shandong Science, 2011, 24(6): 67-70.

[26] 王宗俐, 曹乃锋, 王春录. 一种激光能见度仪设计的.新方法[J]. 激光与红外, 2012, 42(6): 629-632.

    Wang Zongli, Cao Naifeng, Wang Chunlu. New design of laser instrument for detecting the visibility[J]. Laser & Infrared, 2012, 42(6): 629-632.

[27] 宫纯文, 李学彬, 李建玉, 等. 大气气溶胶消光系数测量新方法[J]. 光学学报, 2014, 34(1): 0101001.

    Gong Chunwen, Li Xuebin, Li Jianyu. New method of aerosol extinction coefficient measurement[J]. Acta Optica Sinica, 2014, 34(1): 0101001.

[28] 孙新会, 张天舒, 陆亦怀, 等. 扫描激光雷达大气剖面消光系数优化求解[J]. 中国激光, 2014, 41(3): 0314001.

    Sun Xinhui, Zhang Tianshu, Lu Yihuai, et al.. Optimization solution of atmospheric profile extinction coefficient by scanning lidar[J]. Chinese J Lasers, 2014, 41(3): 0314001.

[29] Markovsky I, Huffel S V. Overview of total least-squares methods[J]. Signal Processing, 2007, 87(2): 0314001.

[30] 鲁铁定. 总体最小二乘平差理论及其在测绘数据处理中的应用[D]. 武汉: 武汉大学, 2010: 40-48.

    Lu Tieding. Research on the Total Least Squares and Its Applications in Surveying Data Processing[D]. Wuhan: Wuhan University, 2010: 40-48.

庄子波, 台宏达, 蒋立辉. 一种基线长度改变的能见度测量和评价方法[J]. 光学学报, 2016, 36(2): 0201001. Zhuang Zibo, Tai Hongda, Jiang Lihui. Changing Baseline Lengths Method of Visibility Measurement and Evaluation[J]. Acta Optica Sinica, 2016, 36(2): 0201001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!