Advanced Photonics, 2020, 2 (1): 014001, Published Online: Jan. 8, 2020   

Terahertz surface plasmonic waves: a review Download: 1206次

Author Affiliations
1 Tianjin University and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin, China
2 Oklahoma State University, School of Electrical and Computer Engineering, Stillwater, Oklahoma, United States
Abstract
Terahertz science and technology promise many cutting-edge applications. Terahertz surface plasmonic waves that propagate at metal–dielectric interfaces deliver a potentially effective way to realize integrated terahertz devices and systems. Previous concerns regarding terahertz surface plasmonic waves have been based on their highly delocalized feature. However, recent advances in plasmonics indicate that the confinement of terahertz surface plasmonic waves, as well as their propagating behaviors, can be engineered by designing the surface environments, shapes, structures, materials, etc., enabling a unique and fascinating regime of plasmonic waves. Together with the essential spectral property of terahertz radiation, as well as the increasingly developed materials, microfabrication, and time-domain spectroscopy technologies, devices and systems based on terahertz surface plasmonic waves may pave the way toward highly integrated platforms for multifunctional operation, implementation, and processing of terahertz waves in both fundamental science and practical applications. We present a review on terahertz surface plasmonic waves on various types of supports in a sequence of properties, excitation and detection, and applications. The current research trend and outlook of possible research directions for terahertz surface plasmonic waves are also outlined.

Xueqian Zhang, Quan Xu, Lingbo Xia, Yanfeng Li, Jianqiang Gu, Zhen Tian, Chunmei Ouyang, Jiaguang Han, Weili Zhang. Terahertz surface plasmonic waves: a review[J]. Advanced Photonics, 2020, 2(1): 014001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!