Advanced Photonics, 2020, 2 (1): 016001, Published Online: Mar. 2, 2020   

Optical phase mining by adjustable spatial differentiator Download: 733次

Author Affiliations
1 Zhejiang University, Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Devices, Department of Physics, Hangzhou, China
2 Zhejiang University, College of Optical Science and Engineering, Hangzhou, China
Abstract
Phase is a fundamental resource for optical imaging but cannot be directly observed with intensity measurements. The existing methods to quantify a phase distribution rely on complex devices and structures and lead to difficulties of optical alignment and adjustment. We experimentally demonstrate a phase mining method based on the so-called adjustable spatial differentiation, by analyzing the polarization of light reflection from a single planar dielectric interface. Introducing an adjustable bias, we create a virtual light source to render the measured images with a shadow-cast effect. From the virtual shadowed images, we can further recover the phase distribution of a transparent object with the accuracy of 0.05λ RMS. Without any dependence on wavelength or material dispersion, this method directly stems from the intrinsic properties of light and can be generally extended to a broad frequency range.

Tengfeng Zhu, Junyi Huang, Zhichao Ruan. Optical phase mining by adjustable spatial differentiator[J]. Advanced Photonics, 2020, 2(1): 016001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!