Advanced Photonics, 2020, 2 (6): 066002, Published Online: Oct. 30, 2020  

Dynamic photonic barcodes for molecular detection based on cavity-enhanced energy transfer Download: 863次

Author Affiliations
1 Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore
2 CINTRA UMI CNRS/NTU/THALES, Singapore
3 Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
Abstract
Optical barcodes have demonstrated a great potential in multiplexed bioassays and cell tracking for their distinctive spectral fingerprints. The vast majority of optical barcodes were designed to identify a specific target by fluorescence emission spectra, without being able to characterize dynamic changes in response to analytes through time. To overcome these limitations, the concept of the bioresponsive dynamic photonic barcode was proposed by exploiting interfacial energy transfer between a microdroplet cavity and binding molecules. Whispering-gallery modes resulting from cavity-enhanced energy transfer were therefore converted into photonic barcodes to identify binding activities, in which more than trillions of distinctive barcodes could be generated by a single droplet. Dynamic spectral barcoding was achieved by a significant improvement in terms of signal-to-noise ratio upon binding to target molecules. Theoretical studies and experiments were conducted to elucidate the effect of different cavity sizes and analyte concentrations. Time-resolved fluorescence lifetime was implemented to investigate the role of radiative and non-radiative energy transfer. Finally, microdroplet photonic barcodes were employed in biodetection to exhibit great potential in fulfilling biomedical applications.

Yunke Zhou, Zhiyi Yuan, Xuerui Gong, Muhammad D. Birowosuto, Cuong Dang, Yu-Cheng Chen. Dynamic photonic barcodes for molecular detection based on cavity-enhanced energy transfer[J]. Advanced Photonics, 2020, 2(6): 066002.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!