Advanced Photonics, 2021, 3 (1): 015002, Published Online: Feb. 25, 2021   

Transient evolution of quasifree electrons of plasma in liquid water revealed by optical-pump terahertz-probe spectroscopy Download: 678次

Author Affiliations
1 Beijing Institute of Technology, School of Optics and Photonics, Beijing Key Laboratory for Precision Optoelectronic Measurement Instruments and Technology, Beijing, China
2 Chinese Academy of Sciences, Shenzhen Institutes of Advanced Technology, Shenzhen, China
3 Capital Normal University, Beijing Advanced Innovation Center for Imaging Technology and Key Laboratory of Terahertz Optoelectronics (MoE), Department of Physics, Beijing, China
4 University of Rochester, Institute of Optics, Rochester, New York, United States
Abstract
The fundamental properties of laser-induced plasma in liquid water, such as the ultrafast electron migration and solvation, have not yet been clarified. We use 1650-nm femtosecond laser pulses to induce the plasma in a stable free-flowing water film under the strong field ionization mechanism. Moreover, we adopt intense terahertz (THz) pulses to probe the ultrafast temporal evolution of quasifree electrons of the laser-induced plasma in water on the subpicosecond scale. For the first time, the THz wave absorption signal with a unique two-step decay characteristic in time domain is demonstrated, indicating the significance of electron solvation in water. We employ the Drude model combined with the multilevel intermediate model and particle-in-a-box model to simulate and analyze the key information of quasifree electrons, such as the frequency-domain absorption characteristics and solvation ratio. In particular, we observe that the solvation capacity of liquid water decreases with the increase of pumping energy. Up to ~50 % of quasifree electrons cannot be captured by traps associated with the bound states as the pumping energy increases to 90 μJ / pulse. The ultrafast electron evolution in liquid water revealed by the optical-pump/THz-probe experiment provides further insights into the formation and evolution mechanisms of liquid plasma.

Yong Tan, Hang Zhao, Rui Zhang, Yuejin Zhao, Cunlin Zhang, Xi-Cheng Zhang, Liangliang Zhang. Transient evolution of quasifree electrons of plasma in liquid water revealed by optical-pump terahertz-probe spectroscopy[J]. Advanced Photonics, 2021, 3(1): 015002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!