Advanced Photonics, 2021, 3 (1): 016003, Published Online: Feb. 5, 2021  

Lasing action in microdroplets modulated by interfacial molecular forces Download: 792次

Author Affiliations
1 Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore
2 Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, Shanghai, China
3 Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, State Key Laboratory of Transducer Technology, Shanghai, China
4 Taiwan Chung Cheng University, Department of Mechanical Engineering, Minhsiung, Chiayi, China
5 Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
Abstract
Liquid droplets offer a great number of opportunities in biochemical and physical research studies in which droplet-based microlasers have come into play over the past decade. While the recent emergence of droplet lasers has demonstrated their powerful capabilities in amplifying subtle molecular changes inside the cavity, the optical interactions between droplet resonators and an interface remain unclear. We revealed the underlying mechanism of droplet lasers when interacting with a droplet–solid interface and explored its correlation with intermolecular forces. A vertically oriented oscillation mode—arc-like mode—was discovered, where the number of lasing modes and their Q-factors increase with the strength of interfacial hydrophobicity. Both experimental and theoretical results demonstrated that hydrophobicity characterized by contact angle and interfacial tension plays a significant role in the geometry of droplet cavity and laser mode characteristics. Finally, we demonstrated how tiny forces induced by proteins and peptides could strongly modulate the lasing output in droplet resonators. Our findings illustrate the potential of exploiting optical resonators to amplify intermolecular force changes, providing comprehensive insights into lasing actions modulated by interfaces and applications in biophysics.

Zhen Qiao, Xuerui Gong, Peng Guan, Zhiyi Yuan, Shilun Feng, Yiyu Zhang, Munho Kim, Guo-En Chang, Yu-Cheng Chen. Lasing action in microdroplets modulated by interfacial molecular forces[J]. Advanced Photonics, 2021, 3(1): 016003.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!